1
|
Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA. The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos. Commun Biol 2021; 4:1158. [PMID: 34620987 PMCID: PMC8497618 DOI: 10.1038/s42003-021-02688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
The enpp ectonucleotidases regulate lipidic and purinergic signalling pathways by controlling the extracellular concentrations of purines and bioactive lipids. Although both pathways are key regulators of kidney physiology and linked to human renal pathologies, their roles during nephrogenesis remain poorly understood. We previously showed that the pronephros was a major site of enpp expression and now demonstrate an unsuspected role for the conserved vertebrate enpp4 protein during kidney formation in Xenopus. Enpp4 over-expression results in ectopic renal tissues and, on rare occasion, complete mini-duplication of the entire kidney. Enpp4 is required and sufficient for pronephric markers expression and regulates the expression of RA, Notch and Wnt pathway members. Enpp4 is a membrane protein that binds, without hydrolyzing, phosphatidylserine and its effects are mediated by the receptor s1pr5, although not via the generation of S1P. Finally, we propose a novel and non-catalytic mechanism by which lipidic signalling regulates nephrogenesis.
Collapse
Affiliation(s)
- Karine Massé
- School of Life Sciences, Warwick University, Coventry, CV47AL, UK.
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.
| | - Surinder Bhamra
- School of Life Sciences, Warwick University, Coventry, CV47AL, UK
| | - Christian Paroissin
- Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques et de leurs Applications-UMR CNRS 5142, 64013, Pau cedex, France
| | - Lilly Maneta-Peyret
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire UMR 5200, F-33800, Villenave d'Ornon, France
| | - Eric Boué-Grabot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
| | | |
Collapse
|
2
|
The Perlman syndrome DIS3L2 exoribonuclease safeguards endoplasmic reticulum-targeted mRNA translation and calcium ion homeostasis. Nat Commun 2020; 11:2619. [PMID: 32457326 PMCID: PMC7250864 DOI: 10.1038/s41467-020-16418-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
DIS3L2-mediated decay (DMD) is a surveillance pathway for certain non-coding RNAs (ncRNAs) including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and RMRP. While mutations in DIS3L2 are associated with Perlman syndrome, the biological significance of impaired DMD is obscure and pathological RNAs have not been identified. Here, by ribosome profiling (Ribo-seq) we find specific dysregulation of endoplasmic reticulum (ER)-targeted mRNA translation in DIS3L2-deficient cells. Mechanistically, DMD functions in the quality control of the 7SL ncRNA component of the signal recognition particle (SRP) required for ER-targeted translation. Upon DIS3L2 loss, sustained 3’-end uridylation of aberrant 7SL RNA impacts ER-targeted translation and causes ER calcium leakage. Consequently, elevated intracellular calcium in DIS3L2-deficient cells activates calcium signaling response genes and perturbs ESC differentiation. Thus, DMD is required to safeguard ER-targeted mRNA translation, intracellular calcium homeostasis, and stem cell differentiation. The DIS3L2 exonuclease degrades aberrant 7SL RNAs tagged by an oligouridine 3′-tail. Here the authors analyze DIS3L2 knockout mouse embryonic stem cells and suggest that DIS3L2-mediated quality control of 7SL RNA is important for ER-mediated translation and calcium ion homeostasis.
Collapse
|
3
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. J Mol Biol 2019; 432:605-620. [PMID: 31711960 DOI: 10.1016/j.jmb.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.
Collapse
|
5
|
Fontana JM, Khodus GR, Unnersjö-Jess D, Blom H, Aperia A, Brismar H. Spontaneous calcium activity in metanephric mesenchymal cells regulates branching morphogenesis in the embryonic kidney. FASEB J 2018; 33:4089-4096. [PMID: 30496703 PMCID: PMC6404591 DOI: 10.1096/fj.201802054r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The central role of calcium signaling during development of early vertebrates is well documented, but little is known about its role in mammalian embryogenesis. We have used immunofluorescence and time-lapse calcium imaging of cultured explanted embryonic rat kidneys to study the role of calcium signaling for branching morphogenesis. In mesenchymal cells, we recorded spontaneous calcium activity that was characterized by irregular calcium transients. The calcium signals were dependent on release of calcium from intracellular stores in the endoplasmic reticulum. Down-regulation of the calcium activity, both by blocking the sarco-endoplasmic reticulum Ca2+-ATPase and by chelating cytosolic calcium, resulted in retardation of branching morphogenesis and a reduced formation of primitive nephrons but had no effect on cell proliferation. We propose that spontaneous calcium activity contributes with a stochastic factor to the self-organizing process that controls branching morphogenesis, a major determinant of the ultimate number of nephrons in the kidney.-Fontana, J. M., Khodus, G. R., Unnersjö-Jess, D., Blom, H., Aperia, A., Brismar, H. Spontaneous calcium activity in metanephric mesenchymal cells regulates branching morphogenesis in the embryonic kidney.
Collapse
Affiliation(s)
- Jacopo M Fontana
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - Georgiy R Khodus
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - David Unnersjö-Jess
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - Hans Blom
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden
| | - Anita Aperia
- Department of Women's and Children's Health, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Hjalmar Brismar
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Solna, Sweden.,Department of Women's and Children's Health, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Paudel S, Sindelar R, Saha M. Calcium Signaling in Vertebrate Development and Its Role in Disease. Int J Mol Sci 2018; 19:E3390. [PMID: 30380695 PMCID: PMC6274931 DOI: 10.3390/ijms19113390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence over the past three decades suggests that altered calcium signaling during development may be a major driving force for adult pathophysiological events. Well over a hundred human genes encode proteins that are specifically dedicated to calcium homeostasis and calcium signaling, and the majority of these are expressed during embryonic development. Recent advances in molecular techniques have identified impaired calcium signaling during development due to either mutations or dysregulation of these proteins. This impaired signaling has been implicated in various human diseases ranging from cardiac malformations to epilepsy. Although the molecular basis of these and other diseases have been well studied in adult systems, the potential developmental origins of such diseases are less well characterized. In this review, we will discuss the recent evidence that examines different patterns of calcium activity during early development, as well as potential medical conditions associated with its dysregulation. Studies performed using various model organisms, including zebrafish, Xenopus, and mouse, have underscored the critical role of calcium activity in infertility, abortive pregnancy, developmental defects, and a range of diseases which manifest later in life. Understanding the underlying mechanisms by which calcium regulates these diverse developmental processes remains a challenge; however, this knowledge will potentially enable calcium signaling to be used as a therapeutic target in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Sudip Paudel
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Regan Sindelar
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Margaret Saha
- College of William and Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
7
|
Futel M, Le Bouffant R, Buisson I, Umbhauer M, Riou JF. Characterization of potential TRPP2 regulating proteins in early Xenopus embryos. J Cell Biochem 2018; 119:10338-10350. [PMID: 30171710 DOI: 10.1002/jcb.27376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022]
Abstract
Transient receptor potential cation channel-2 (TRPP2) is a nonspecific Ca2+ -dependent cation channel with versatile functions including control of extracellular calcium entry at the plasma membrane, release of intracellular calcium ([Ca2+ ]i) from internal stores of endoplasmic reticulum, and calcium-dependent mechanosensation in the primary cilium. In early Xenopus embryos, TRPP2 is expressed in cilia of the gastrocoel roof plate (GRP) involved in the establishment of left-right asymmetry, and in nonciliated kidney field (KF) cells, where it plays a central role in early specification of nephron tubule cells dependent on [Ca2+ ]i signaling. Identification of proteins binding to TRPP2 in embryo cells can provide interesting clues about the mechanisms involved in its regulation during these various processes. Using mass spectrometry, we have therefore characterized proteins from late gastrula/early neurula stage embryos coimmunoprecipitating with TRPP2. Binding of three of these proteins, golgin A2, protein kinase-D1, and disheveled-2 has been confirmed by immunoblotting analysis of TRPP2-coprecipitated proteins. Expression analysis of the genes, respectively, encoding these proteins, golga2, prkd1, and dvl2 indicates that they are likely to play a role in these two regions. Golga2 and prkd1 are expressed at later stage in the developing pronephric tubule where golgin A2 and protein kinase-D1 might also interact with TRPP2. Colocalization experiments using exogenously expressed fluorescent versions of TRPP2 and dvl2 in GRP and KF reveal that these two proteins are generally not coexpressed, and only colocalized in discrete region of cells. This was observed in KF cells, but does not appear to occur in the apical ciliated region of GRP cells.
Collapse
Affiliation(s)
- Mélinée Futel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Ronan Le Bouffant
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Isabelle Buisson
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Jean-François Riou
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| |
Collapse
|
8
|
Toolbox in a tadpole: Xenopus for kidney research. Cell Tissue Res 2017; 369:143-157. [PMID: 28401306 DOI: 10.1007/s00441-017-2611-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Xenopus is a versatile model organism increasingly used to study organogenesis and genetic diseases. The rapid embryonic development, targeted injections, loss- and gain-of-function experiments and an increasing supply of tools for functional in vivo analysis are unique advantages of the Xenopus system. Here, we review the vast array of methods available that have facilitated its transition into a translational model. We will focus primarily on how these methods have been employed in the study of kidney development, renal function and kidney disease. Future advances in the fields of genome editing, imaging and quantitative 'omics approaches are likely to enable exciting and novel applications for Xenopus to deepen our understanding of core principles of renal development and molecular mechanisms of human kidney disease. Thus, using Xenopus in clinically relevant research diversifies the narrowing pool of "standard" model organisms and provides unique opportunities for translational research.
Collapse
|
9
|
Lienkamp SS. Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 2016; 51:117-24. [PMID: 26851624 DOI: 10.1016/j.semcdb.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Modern sequencing technology is revolutionizing our knowledge of inherited kidney disease. However, the molecular role of genes affected by the rapidly rising number of identified mutations is lagging behind. Xenopus is a highly useful, but underutilized model organism with unique properties excellently suited to decipher the molecular mechanisms of kidney development and disease. The embryonic kidney (pronephros) can be manipulated on only one side of the animal and its formation observed directly through the translucent skin. The moderate evolutionary distance between Xenopus and humans is a huge advantage for studying basic principles of kidney development, but still allows us to analyze the function of disease related genes. Optogenetic manipulations and genome editing by CRISPR/Cas are exciting additions to the toolbox for disease modelling and will facilitate the use of Xenopus in translational research. Therefore, the future of Xenopus in kidney research is bright.
Collapse
Affiliation(s)
- Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albertstraße 19, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
Moreau M, Néant I, Webb SE, Miller AL, Riou JF, Leclerc C. Ca(2+) coding and decoding strategies for the specification of neural and renal precursor cells during development. Cell Calcium 2015; 59:75-83. [PMID: 26744233 DOI: 10.1016/j.ceca.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
During embryogenesis, a rise in intracellular Ca(2+) is known to be a widespread trigger for directing stem cells towards a specific tissue fate, but the precise Ca(2+) signalling mechanisms involved in achieving these pleiotropic effects are still poorly understood. In this review, we compare the Ca(2+) signalling events that appear to be one of the first steps in initiating and regulating both neural determination (neural induction) and kidney development (nephrogenesis). We have highlighted the necessary and sufficient role played by Ca(2+) influx and by Ca(2+) transients in the determination and differentiation of pools of neural or renal precursors. We have identified new Ca(2+) target genes involved in neural induction and we showed that the same Ca(2+) early target genes studied are not restricted to neural tissue but are also present in other tissues, principally in the pronephros. In this review, we also described a mechanism whereby the transcriptional control of gene expression during neurogenesis and nephrogenesis might be directly controlled by Ca(2+) signalling. This mechanism involves members of the Kcnip family such that a change in their binding properties to specific DNA sites is a result of Ca(2+) binding to EF-hand motifs. The different functions of Ca(2+) signalling during these two events illustrate the versatility of Ca(2+) as a second messenger.
Collapse
Affiliation(s)
- Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China; MBL, Woods Hole, MA, USA
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France; CNRS, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| |
Collapse
|
11
|
Gassié L, Lombard A, Moraldi T, Bibonne A, Leclerc C, Moreau M, Marlier A, Gilbert T. Hspa9 is required for pronephros specification and formation inXenopus laevis. Dev Dyn 2015; 244:1538-49. [DOI: 10.1002/dvdy.24344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Lionel Gassié
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
| | | | - Tiphanie Moraldi
- Université Lyon 1 Institut Universitaire Technologique; Villeurbanne France
| | - Anne Bibonne
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Catherine Leclerc
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Marc Moreau
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Arnaud Marlier
- Yale' School of Medicine Department of Internal Medicine; New Haven Connecticut USA
| | - Thierry Gilbert
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
- Institut National de la Santé et de la Recherche Médicale; Toulouse France
| |
Collapse
|
12
|
Futel M, Leclerc C, Le Bouffant R, Buisson I, Néant I, Umbhauer M, Moreau M, Riou JF. TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus. J Cell Sci 2015; 128:888-99. [PMID: 25588842 DOI: 10.1242/jcs.155499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a central component of Ca(2+) signaling in the kidney field. TRPP2 is strongly expressed at the plasma membrane where it might regulate extracellular Ca(2+) entry. Knockdown of pkd2 in the kidney field results in the downregulation of pax8, but not of other kidney field genes (lhx1, osr1 and osr2). We further show that inhibition of Ca(2+) signaling with an inducible Ca(2+) chelator also causes downregulation of pax8, and that pkd2 knockdown results in a severe inhibition of Ca(2+) transients in kidney field explants. Finally, we show that disruption of RA results both in an inhibition of intracellular Ca(2+) signaling and of TRPP2 incorporation into the plasma membrane of kidney field cells. We propose that TRPP2-dependent Ca(2+) signaling is a key component of pax8 regulation in the kidney field downstream of RA-mediated non-transcriptional control of TRPP2.
Collapse
Affiliation(s)
- Mélinée Futel
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Ronan Le Bouffant
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Isabelle Buisson
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Muriel Umbhauer
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France CNRS UMR5547, Toulouse F31062, France
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France CNRS, Equipe 'Signalisation et Morphogenèse', UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
13
|
Shi W, Xu G, Wang C, Sperber SM, Chen Y, Zhou Q, Deng Y, Zhao H. Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. J Biol Chem 2015; 290:577-89. [PMID: 25398881 PMCID: PMC4281759 DOI: 10.1074/jbc.m114.591628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/09/2014] [Indexed: 12/17/2022] Open
Abstract
Heat shock 70-kDa protein 5 (Hspa5), also known as binding immunoglobulin protein (Bip) or glucose-regulated protein 78 (Grp78), belongs to the heat shock protein 70 kDa family. As a multifunctional protein, it participates in protein folding and calcium homeostasis and serves as an essential regulator of the endoplasmic reticulum (ER) stress response. It has also been implicated in signal transduction by acting as a receptor or co-receptor residing at the plasma membrane. Its function during embryonic development, however, remains largely elusive. In this study, we used morpholino antisense oligonucleotides (MOs) to knock down Hspa5 activity in Xenopus embryos. In Hspa5 morphants, pronephros formation was strongly inhibited with the reduction of pronephric marker genes Lim homeobox protein 1 (lhx1), pax2, and β1 subunit of Na/K-ATPase (atp1b1). Pronephros tissue was induced in vitro by treating animal caps with all-trans-retinoic acid and activin. Depletion of Hspa5 in animal caps, however, blocked the induction of pronephros as well as reduced the expression of retinoic acid (RA)-responsive genes, suggesting that knockdown of Hspa5 attenuated RA signaling. Knockdown of Hspa5 in animal caps resulted in decreased expression of lhx1, a transcription factor directly regulated by RA signaling and essential for pronephros specification. Co-injection of Hspa5MO with lhx1 mRNA partially rescued the phenotype induced by Hspa5MO. These results suggest that the RA-Lhx1 signaling cascade is involved in Hspa5MO-induced pronephros malformation. This study shows that Hspa5, a key regulator of the unfolded protein response, plays an essential role in pronephros formation, which is mediated in part through RA signaling during early embryonic development.
Collapse
Affiliation(s)
- Weili Shi
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Gang Xu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, China
| | - Chengdong Wang
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Steven M Sperber
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Qin Zhou
- Division of Molecular Nephrology and Creative Training Center for Undergraduates, Ministry of Education Key Laboratory of Laboratory Medicine Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Deng
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China,
| | - Hui Zhao
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China,
| |
Collapse
|
14
|
Tréguer K, Faucheux C, Veschambre P, Fédou S, Thézé N, Thiébaud P. Comparative functional analysis of ZFP36 genes during Xenopus development. PLoS One 2013; 8:e54550. [PMID: 23342169 PMCID: PMC3546996 DOI: 10.1371/journal.pone.0054550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/14/2012] [Indexed: 01/12/2023] Open
Abstract
ZFP36 constitutes a small family of RNA binding proteins (formerly known as the TIS11 family) that target mRNA and promote their degradation. In mammals, ZFP36 proteins are encoded by four genes and, although they show similar activities in a cellular RNA destabilization assay, there is still a limited knowledge of their mRNA targets and it is not known whether or not they have redundant functions. In the present work, we have used the Xenopus embryo, a model system allowing gain- and loss-of-function studies, to investigate, whether individual ZFP36 proteins had distinct or redundant functions. We show that overexpression of individual amphibian zfp36 proteins leads to embryos having the same defects, with alteration in somites segmentation and pronephros formation. In these embryos, members of the Notch signalling pathway such as hairy2a or esr5 mRNA are down-regulated, suggesting common targets for the different proteins. We also show that mouse Zfp36 protein overexpression gives the same phenotype, indicating an evolutionary conserved property among ZFP36 vertebrate proteins. Morpholino oligonucleotide-induced loss-of-function leads to defects in pronephros formation, reduction in tubule size and duct coiling alterations for both zfp36 and zfp36l1, indicating no functional redundancy between these two genes. Given the conservation in gene structure and function between the amphibian and mammalian proteins and the conserved mechanisms for pronephros development, our study highlights a potential and hitherto unreported role of ZFP36 gene in kidney morphogenesis.
Collapse
|
15
|
Bibonne A, Néant I, Batut J, Leclerc C, Moreau M, Gilbert T. Three calcium-sensitive genes, fus, brd3 and wdr5, are highly expressed in neural and renal territories during amphibian development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1665-71. [PMID: 23287019 DOI: 10.1016/j.bbamcr.2012.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/08/2023]
Abstract
Numerous Ca(2+) signaling events have been associated with early development of vertebrate embryo, from fertilization to organogenesis. In Xenopus laevis, Ca(2+) signals are key regulators in the earliest steps of the nervous system development. If neural determination is one of the best-characterized examples of the role of Ca(2+) during embryogenesis, increasing literature supports a determining role of organogenesis and differentiation. In blastula the cells of the presumptive ectoderm (animal caps) are pluripotent and can be induced toward neural fate with an intracellular increase of free Ca(2+) triggered by caffeine. To identify genes that are transcribed early upon Ca(2+) stimuli and involved in neural determination, we have constructed a subtractive cDNA library between neuralized and non-neuralized animal caps. Here we present the expression pattern of three new Ca(2+)-sensitive genes: fus (fused in sarcoma), brd3 (bromodomain containing 3) and wdr5 (WD repeat domain 5) as they all represent potential regulators of the transcriptional machinery. Using in situ hybridization we illustrated the spatial expression pattern of fus, brd3 and wdr5 during early developmental stages of Xenopus embryos. Strikingly, their domains of expression are not restricted to neural territories. They all share a specific expression throughout renal organogenesis which has been found to rely also on Ca(2+) signaling. This therefore highlights the key function of Ca(2+) target genes in specific territories during early development. We propose that Ca(2+) signaling through modulation of fus, brd3 and wdr5 expressions can control the transcription machinery to achieve proper embryogenesis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- A Bibonne
- Université Toulouse 3, Centre de Biologie du Développement, Toulouse, France
| | | | | | | | | | | |
Collapse
|
16
|
Stence NV, Fenton LZ, Goldenberg NA, Armstrong-Wells J, Bernard TJ. Craniocervical arterial dissection in children: diagnosis and treatment. Curr Treat Options Neurol 2011; 13:636-48. [PMID: 21979145 PMCID: PMC3297486 DOI: 10.1007/s11940-011-0149-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OPINION STATEMENT Diagnosis of craniocervical arterial dissection (CCAD) in children begins with a careful history and physical in a child with a transient ischemic attack (TIA) or arterial ischemic stroke (AIS). The extent of radiologic evaluation for suspected CCAD is based upon careful consideration of the risks associated with the best imaging techniques, weighed against the benefits of enhanced vascular imaging with better diagnostic sensitivity. Although conventional angiography (CA) and CT angiography (CTA) have a higher sensitivity than magnetic resonance angiography (MRA), they are accompanied by risks: for CA, femoral hematoma, femoral arterial pseudoaneurysm, recurrent AIS, and radiation exposure; for CTA, radiation. For children (non-neonates) with suspected CCAD, MRI with MRA is recommended as the first-line imaging study. MRI usually includes diffusion-weighted, FLAIR, and T1 images of the brain, and T1 or T2 fat-saturation axial imaging through the neck. MRA should include 3D time-of-flight MRA of the head and neck (from the aortic arch through the circle of Willis). Contrast-enhanced MRA should be highly considered in neck imaging. If MRI/MRA is equivocal, CCAD is strongly suspected but not detected on MRI/MRA (especially in the posterior circulation), or the child has recurrent events, additional imaging of the craniocervical vasculature is likely warranted. Individual clinical circumstances warrant careful, case-by-case consideration. Treatment of CCAD in children is challenging and differs for intracranial and extracranial dissections. In extracranial CCAD, we most commonly use anticoagulation for 6 weeks to 6 months in patients with TIA or AIS. Typically, unfractionated heparin is used in the acutely ill patient at heightened risk for bleeding (because of its short half-life), whereas low-molecular-weight heparin (LMWH) or warfarin are reserved for the stable patient. If the history is suspicious for dissection (head and neck trauma, recent cervical chiropractic manipulation, recent car accident, or neck pain), we consider treatment for dissection even with normal MRI/MRA. For patients with CCAD with a stroke size greater than one third to one half of the middle cerebral artery territory (or other bleeding risk factors) and extracranial CCAD, in whom there is concern about heightened risk for hemorrhagic conversion, we commonly use aspirin therapy during the acute phase. Regardless of their treatment in the initial weeks to months, we subsequently treat all patients with aspirin for 1 year after their event, and sometimes longer if they have other risk factors. Interventional techniques, such as extracranial cerebral arterial stent placement or selective occlusion, are understudied in children. Interventional techniques are typically reserved for patients who fail aggressive medical management and have recurrent TIA or AIS. The diagnosis and treatment of intracranial dissection is extraordinarily challenging in children, in whom inflammatory intracranial arteriopathies are common. When intracranial arteriopathy is clearly associated with dissection, the clinician should look for the presence of subarachnoid hemorrhage and/or dissecting aneurysm. Treatment decisions should be made by a multidisciplinary pediatric stroke team, given the lack of data in this area. Intracranial cerebral artery stent placement carries high risk and is not recommended for intracranial CCAD in children. Most importantly, we educate all children with CCAD and their parents about the paucity of evidence in the treatment of this disease, the risks of enhanced imaging techniques such as CTA or CA, and the challenges involved in weighing the risks of aggressive therapies and interventions against the costs of unclear diagnosis and potentially ineffective treatments. We also educate our patients with CCAD about the signs and symptoms of recurrence and the importance of emergent evaluation.
Collapse
Affiliation(s)
- Nicholas V Stence
- University of Colorado Hemophilia and Thrombosis Center, P.O. Box 6507, Aurora, CO, 80045-0507, USA
| | | | | | | | | |
Collapse
|
17
|
Gilbert T, Leclerc C, Moreau M. Control of kidney development by calcium ions. Biochimie 2011; 93:2126-31. [PMID: 21802484 DOI: 10.1016/j.biochi.2011.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/08/2011] [Indexed: 11/27/2022]
Abstract
From the formation of a simple kidney in amphibian larvae, the pronephros, to the formation of the more complex mammalian kidney, the metanephros, calcium is present through numerous steps of tubulogenesis and nephron induction. Several calcium-binding proteins such as regucalcin/SMP-30 and calbindin-D28k are commonly used to label pronephric tubules and metanephric ureteral epithelium, respectively. However, the involvement of calcium and calcium signalling at various stages of renal organogenesis was not clearly delineated. In recent years, several studies have pinpointed an unsuspected role of calcium in determination of the pronephric territory and for conversion of metanephric mesenchyme into nephrons. Influx of calcium and calcium transients have been recorded in the pool of renal progenitors to allow tubule formation, highlighting the occurrence of calcium-dependent signalling events during early kidney development. Characterization of nuclear calcium signalling is emerging. Implication of the non-canonical calcium/NFAT Wnt signalling pathway as an essential mechanism to promote nephrogenesis has recently been demonstrated. This review examines the current knowledge of the impact of calcium ions during embryonic development of the kidney. It focuses on Ca(2+) binding proteins and Ca(2+) sensors that are involved in renal organogenesis and briefly examines the link between calcium-dependent signals and polycystins.
Collapse
Affiliation(s)
- Thierry Gilbert
- CNRS UMR 5547, Centre de Biologie du Développement, Université de Toulouse, Toulouse, France.
| | | | | |
Collapse
|
18
|
Burn S, Webb A, Berry R, Davies J, Ferrer-Vaquer A, Hadjantonakis A, Hastie N, Hohenstein P. Calcium/NFAT signalling promotes early nephrogenesis. Dev Biol 2011; 352:288-98. [PMID: 21295565 PMCID: PMC3070816 DOI: 10.1016/j.ydbio.2011.01.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/23/2011] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
A number of Wnt genes are expressed during, and are known to be essential for, early kidney development. It is typically assumed that their products will act through the canonical β-catenin signalling pathway. We have found evidence that suggests canonical Wnt signalling is not active in the early nephrogenic metanephric mesenchyme, but instead provide expressional and functional evidence that implicates the non-canonical Calcium/NFAT Wnt signalling pathway in nephrogenesis. Members of the NFAT (Nuclear Factor Activated in T cells) transcription factor gene family are expressed throughout murine kidney morphogenesis and NFATc3 is localised to the developing nephrons. Treatment of kidney rudiments with Cyclosporin A (CSA), an inhibitor of Calcium/NFAT signalling, decreases nephron formation — a phenotype similar to that in Wnt4−/− embryos. Treatment of Wnt4−/− kidneys with Ionomycin, an activator of the pathway, partially rescues the phenotype. We propose that the non-canonical Calcium/NFAT Wnt signalling pathway plays an important role in early mammalian renal development and is required for complete MET during nephrogenesis, potentially acting downstream of Wnt4.
Collapse
Affiliation(s)
- S.F. Burn
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Correspondence to: S.F. Burn, Current address: Department of Genetics & Development, Columbia University Medical Center, 701 168th Street, New York, NY 10033, USA.
| | - A. Webb
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - R.L. Berry
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - J.A. Davies
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - A. Ferrer-Vaquer
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - A.K. Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - N.D. Hastie
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - P. Hohenstein
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Corresponding author.
| |
Collapse
|
19
|
Tissue-specific expression of Sarcoplasmic/Endoplasmic Reticulum Calcium ATPases (ATP2A/SERCA) 1, 2, 3 during Xenopus laevis development. Gene Expr Patterns 2011; 11:122-8. [DOI: 10.1016/j.gep.2010.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 12/13/2022]
|
20
|
Leung CF, Miller AL, Korzh V, Chong SW, Sleptsova-Freidrich I, Webb SE. Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos. Dev Growth Differ 2009; 51:617-37. [DOI: 10.1111/j.1440-169x.2009.01123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Lam PY, Webb SE, Leclerc C, Moreau M, Miller AL. Inhibition of stored Ca2+ release disrupts convergence-related cell movements in the lateral intermediate mesoderm resulting in abnormal positioning and morphology of the pronephric anlagen in intact zebrafish embryos. Dev Growth Differ 2009; 51:429-42. [PMID: 19382938 DOI: 10.1111/j.1440-169x.2009.01106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ca(2+) is a highly versatile intra- and intercellular signal that has been reported to regulate a variety of different pattern-forming processes during early development. To investigate the potential role of Ca(2+) signaling in regulating convergence-related cell movements, and the positioning and morphology of the pronephric anlagen, we treated zebrafish embryos from 11.5 h postfertilization (hpf; i.e. just before the pronephric anlagen are morphologically distinguishable in the lateral intermediate mesoderm; LIM) to 16 hpf, with a variety of membrane permeable pharmacological reagents known to modulate [Ca(2+)](i). The effect of these treatments on pronephric anlagen positioning and morphology was determined in both fixed and live embryos via in situ hybridization using the pronephic-specific probes, cdh17, pax2.1 and sim1, and confocal imaging of BODIPY FL C(5)-ceramide-labeled embryos, respectively. We report that Ca(2+) released from intracellular stores via inositol 1,4,5-trisphosphate receptors plays a significant role in the positioning and morphology of the pronephric anlagen, but does not affect the fate determination of the LIM cells that form these primordia. Our data suggest that when Ca(2+) release is inhibited, the resulting effects on the pronephric anlagen are a consequence of the disruption of normal convergence-related movements of LIM cells toward the embryonic midline.
Collapse
Affiliation(s)
- Pui Ying Lam
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
22
|
Lee KW, Moreau M, Néant I, Bibonne A, Leclerc C. FGF-activated calcium channels control neural gene expression in Xenopus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1033-40. [DOI: 10.1016/j.bbamcr.2008.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 01/29/2023]
|