1
|
Vorobyeva NE, Krasnov AN, Erokhin M, Chetverina D, Mazina M. Su(Hw) interacts with Combgap to establish long-range chromatin contacts. Epigenetics Chromatin 2024; 17:17. [PMID: 38773468 PMCID: PMC11106861 DOI: 10.1186/s13072-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Insulator-binding proteins (IBPs) play a critical role in genome architecture by forming and maintaining contact domains. While the involvement of several IBPs in organising chromatin architecture in Drosophila has been described, the specific contribution of the Suppressor of Hairy wings (Su(Hw)) insulator-binding protein to genome topology remains unclear. RESULTS In this study, we provide evidence for the existence of long-range interactions between chromatin bound Su(Hw) and Combgap, which was first characterised as Polycomb response elements binding protein. Loss of Su(Hw) binding to chromatin results in the disappearance of Su(Hw)-Combgap long-range interactions and in a decrease in spatial self-interactions among a subset of Su(Hw)-bound genome sites. Our findings suggest that Su(Hw)-Combgap long-range interactions are associated with active chromatin rather than Polycomb-directed repression. Furthermore, we observe that the majority of transcription start sites that are down-regulated upon loss of Su(Hw) binding to chromatin are located within 2 kb of Combgap peaks and exhibit Su(Hw)-dependent changes in Combgap and transcriptional regulators' binding. CONCLUSIONS This study demonstrates that Su(Hw) insulator binding protein can form long-range interactions with Combgap, Polycomb response elements binding protein, and that these interactions are associated with active chromatin factors rather than with Polycomb dependent repression.
Collapse
Affiliation(s)
- Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
White KA, Grillo-Hill BK, Esquivel M, Peralta J, Bui VN, Chire I, Barber DL. β-Catenin is a pH sensor with decreased stability at higher intracellular pH. J Cell Biol 2018; 217:3965-3976. [PMID: 30315137 PMCID: PMC6219716 DOI: 10.1083/jcb.201712041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
White et al. find that intracellular pH regulates the stability of β-catenin, the Wnt signaling molecule that controls cell polarity, adhesion, and differentiation. A conserved histidine residue in β-catenin mediates pH-dependent binding to the E3 ligase β-TrCP for degradation, and a cancer-associated mutation that bypasses this pH-sensitive regulation induces ectopic tumors in the Drosophila eye. β-Catenin functions as an adherens junction protein for cell–cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein–protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster. β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R–β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation.
Collapse
Affiliation(s)
- Katharine A White
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Bree K Grillo-Hill
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Mario Esquivel
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Jobelle Peralta
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Vivian N Bui
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Ismahan Chire
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Scacchetti A, Brueckner L, Jain D, Schauer T, Zhang X, Schnorrer F, van Steensel B, Straub T, Becker PB. CHRAC/ACF contribute to the repressive ground state of chromatin. Life Sci Alliance 2018; 1:e201800024. [PMID: 30456345 PMCID: PMC6238394 DOI: 10.26508/lsa.201800024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022] Open
Abstract
Chromatin accessibility complex/ATP-utilizing chromatin assembly and remodeling factor help to establish basal transcriptional repression, conceivably through improving the regular spacing of nucleosomes in euchromatin. The chromatin remodeling complexes chromatin accessibility complex and ATP-utilizing chromatin assembly and remodeling factor (ACF) combine the ATPase ISWI with the signature subunit ACF1. These enzymes catalyze well-studied nucleosome sliding reactions in vitro, but how their actions affect physiological gene expression remains unclear. Here, we explored the influence of Drosophila melanogaster chromatin accessibility complex/ACF on transcription by using complementary gain- and loss-of-function approaches. Targeting ACF1 to multiple reporter genes inserted at many different genomic locations revealed a context-dependent inactivation of poorly transcribed reporters in repressive chromatin. Accordingly, single-embryo transcriptome analysis of an Acf knock-out allele showed that only lowly expressed genes are derepressed in the absence of ACF1. Finally, the nucleosome arrays in Acf-deficient chromatin show loss of physiological regularity, particularly in transcriptionally inactive domains. Taken together, our results highlight that ACF1-containing remodeling factors contribute to the establishment of an inactive ground state of the genome through chromatin organization.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany.,Center for Integrated Protein Science Munich, München, Germany
| | - Laura Brueckner
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dhawal Jain
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany.,Center for Integrated Protein Science Munich, München, Germany
| | - Tamas Schauer
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany.,Center for Integrated Protein Science Munich, München, Germany
| | - Xu Zhang
- Developmental Biology Institute of Marseille, Aix Marseille University, Centre Nationnal de la Recherche Scientifique, Marseille, France.,School of Life Science and Engineering, Foshan University, Foshan, China
| | - Frank Schnorrer
- Developmental Biology Institute of Marseille, Aix Marseille University, Centre Nationnal de la Recherche Scientifique, Marseille, France
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tobias Straub
- Bioinformatic Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany.,Center for Integrated Protein Science Munich, München, Germany
| |
Collapse
|
5
|
Goodwin LR, Picketts DJ. The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders. Mol Cell Neurosci 2017; 87:55-64. [PMID: 29249292 DOI: 10.1016/j.mcn.2017.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/04/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022] Open
Abstract
The mammalian ISWI (Imitation Switch) genes SMARCA1 and SMARCA5 encode the ATP-dependent chromatin remodeling proteins SNF2L and SNF2H. The ISWI proteins interact with BAZ (bromodomain adjacent to PHD zinc finger) domain containing proteins to generate eight distinct remodeling complexes. ISWI complex-mediated nucleosome positioning within genes and gene regulatory elements is proving important for the transition from a committed progenitor state to a differentiated cell state. Genetic studies have implicated the involvement of many ATP-dependent chromatin remodeling proteins in neurodevelopmental disorders (NDDs), including SMARCA1. Here we review the characterization of mice inactivated for ISWI and their interacting proteins, as it pertains to brain development and disease. A better understanding of chromatin dynamics during neural development is a prerequisite to understanding disease pathologies and the development of therapeutics for these complex disorders.
Collapse
Affiliation(s)
- Laura R Goodwin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
6
|
Non-canonical reader modules of BAZ1A promote recovery from DNA damage. Nat Commun 2017; 8:862. [PMID: 29021563 PMCID: PMC5636791 DOI: 10.1038/s41467-017-00866-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/27/2017] [Indexed: 01/08/2023] Open
Abstract
Members of the ISWI family of chromatin remodelers mobilize nucleosomes to control DNA accessibility and, in some cases, are required for recovery from DNA damage. However, it remains poorly understood how the non-catalytic ISWI subunits BAZ1A and BAZ1B might contact chromatin to direct the ATPase SMARCA5. Here, we find that the plant homeodomain of BAZ1A, but not that of BAZ1B, has the unusual function of binding DNA. Furthermore, the BAZ1A bromodomain has a non-canonical gatekeeper residue and binds relatively weakly to acetylated histone peptides. Using CRISPR-Cas9-mediated genome editing we find that BAZ1A and BAZ1B each recruit SMARCA5 to sites of damaged chromatin and promote survival. Genetic engineering of structure-designed bromodomain and plant homeodomain mutants reveals that reader modules of BAZ1A and BAZ1B, even when non-standard, are critical for DNA damage recovery in part by regulating ISWI factors loading at DNA lesions and supporting transcriptional programs required for survival. ISWI chromatin remodelers regulate DNA accessibility and have been implicated in DNA damage repair. Here, the authors uncover functions, in response to DNA damage, for the bromodomain of the ISWI subunit BAZ1B and for the non-canonical PHD and bromodomain modules of the paralog BAZ1A.
Collapse
|
7
|
Tian A, Benchabane H, Wang Z, Zimmerman C, Xin N, Perochon J, Kalna G, Sansom OJ, Cheng C, Cordero JB, Ahmed Y. Intestinal stem cell overproliferation resulting from inactivation of the APC tumor suppressor requires the transcription cofactors Earthbound and Erect wing. PLoS Genet 2017; 13:e1006870. [PMID: 28708826 PMCID: PMC5510812 DOI: 10.1371/journal.pgen.1006870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signal transduction directs intestinal stem cell (ISC) proliferation during homeostasis. Hyperactivation of Wnt signaling initiates colorectal cancer, which most frequently results from truncation of the tumor suppressor Adenomatous polyposis coli (APC). The β-catenin-TCF transcription complex activates both the physiological expression of Wnt target genes in the normal intestinal epithelium and their aberrantly increased expression in colorectal tumors. Whether mechanistic differences in the Wnt transcription machinery drive these distinct levels of target gene activation in physiological versus pathological states remains uncertain, but is relevant for the design of new therapeutic strategies. Here, using a Drosophila model, we demonstrate that two evolutionarily conserved transcription cofactors, Earthbound (Ebd) and Erect wing (Ewg), are essential for all major consequences of Apc1 inactivation in the intestine: the hyperactivation of Wnt target gene expression, excess number of ISCs, and hyperplasia of the epithelium. In contrast, only Ebd, but not Ewg, mediates the Wnt-dependent regulation of ISC proliferation during homeostasis. Therefore, in the adult intestine, Ebd acts independently of Ewg in physiological Wnt signaling, but cooperates with Ewg to induce the hyperactivation of Wnt target gene expression following Apc1 loss. These findings have relevance for human tumorigenesis, as Jerky (JRK/JH8), the human Ebd homolog, promotes Wnt pathway hyperactivation and is overexpressed in colorectal, breast, and ovarian cancers. Together, our findings reveal distinct requirements for Ebd and Ewg in physiological Wnt pathway activation versus oncogenic Wnt pathway hyperactivation following Apc1 loss. Such differentially utilized transcription cofactors may offer new opportunities for the selective targeting of Wnt-driven cancers.
Collapse
Affiliation(s)
- Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Chloe Zimmerman
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Nan Xin
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Jessica Perochon
- Wolfson Wohl Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gabriela Kalna
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Owen J. Sansom
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Chao Cheng
- Department of Biomedical Data Science, Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Julia B. Cordero
- Wolfson Wohl Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
8
|
Zaghlool A, Halvardson J, Zhao JJ, Etemadikhah M, Kalushkova A, Konska K, Jernberg-Wiklund H, Thuresson AC, Feuk L. A Role for the Chromatin-Remodeling Factor BAZ1A in Neurodevelopment. Hum Mutat 2016; 37:964-75. [PMID: 27328812 PMCID: PMC6681169 DOI: 10.1002/humu.23034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
Chromatin‐remodeling factors are required for a wide range of cellular and biological processes including development and cognition, mainly by regulating gene expression. As these functions would predict, deregulation of chromatin‐remodeling factors causes various disease syndromes, including neurodevelopmental disorders. Recent reports have linked mutations in several genes coding for chromatin‐remodeling factors to intellectual disability (ID). Here, we used exome sequencing and identified a nonsynonymous de novo mutation in BAZ1A (NM_182648.2:c.4043T > G, p.Phe1348Cys), encoding the ATP‐utilizing chromatin assembly and remodeling factor 1 (ACF1), in a patient with unexplained ID. ACF1 has been previously reported to bind to the promoter of the vitamin D receptor (VDR)‐regulated genes and suppress their expression. Our results show that the patient displays decreased binding of ACF1 to the promoter of the VDR‐regulated gene CYP24A1. Using RNA sequencing, we find that the mutation affects the expression of genes involved in several pathways including vitamin D metabolism, Wnt signaling and synaptic formation. RNA sequencing of BAZ1A knockdown cells and Baz1a knockout mice revealed that BAZ1A carry out distinctive functions in different tissues. We also demonstrate that BAZ1A depletion influence the expression of genes important for nervous system development and function. Our data point to an important role for BAZ1A in neurodevelopment, and highlight a possible link for BAZ1A to ID.
Collapse
Affiliation(s)
- Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Jin J Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Mitra Etemadikhah
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Antonia Kalushkova
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Katarzyna Konska
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Helena Jernberg-Wiklund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Ann-Charlotte Thuresson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
9
|
Fan K, Chen S, Ge Y, Ye K, Yao Q, Jing J, Zhang J, Tu X, Yao B. Backbone and side-chain NMR assignments for the bromodomain of mouse BAZ1A (ACF1). BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:131-134. [PMID: 26542424 DOI: 10.1007/s12104-015-9651-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
BAZ1A, a non-catalytic subunit of the chromatin remodeler complexes ACF and CHRAC, is thought to modulate the ATPase's activity of the complexes and participate in gene transcription, DNA damage checkpoint and double-strand break repair. Recently, the essential role of BAZ1A in mouse male fertility has also been reported. BAZ1A contains one C-terminal bromodomain, which specifically recognizes acetylation of lysine. Here, we report the backbone and side chain (1)H, (13)C and (15)N resonance assignment of the mouse BAZ1A-bromodomain, as a basis for further functional studies and structure determination.
Collapse
Affiliation(s)
- Kai Fan
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Shengrong Chen
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Yifeng Ge
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Kaiqin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Qi Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Jun Jing
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. Nat Med 2015; 21:1146-53. [PMID: 26390241 PMCID: PMC4598281 DOI: 10.1038/nm.3939] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/11/2015] [Indexed: 02/08/2023]
Abstract
Improved treatment for major depressive disorder (MDD) remains elusive because of the limited understanding of its underlying biological mechanisms. It is likely that stress-induced maladaptive transcriptional regulation in limbic neural circuits contributes to the development of MDD, possibly through epigenetic factors that regulate chromatin structure. We establish that persistent upregulation of the ACF (ATP-utilizing chromatin assembly and remodeling factor) ATP-dependent chromatin-remodeling complex, occurring in the nucleus accumbens of stress-susceptible mice and depressed humans, is necessary for stress-induced depressive-like behaviors. We found that altered ACF binding after chronic stress was correlated with altered nucleosome positioning, particularly around the transcription start sites of affected genes. These alterations in ACF binding and nucleosome positioning were associated with repressed expression of genes implicated in susceptibility to stress. Together, our findings identify the ACF chromatin-remodeling complex as a critical component in the development of susceptibility to depression and in regulating stress-related behaviors.
Collapse
|
11
|
Ren J, Briones V, Barbour S, Yu W, Han Y, Terashima M, Muegge K. The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res 2015; 43:1444-55. [PMID: 25578963 PMCID: PMC4330352 DOI: 10.1093/nar/gku1371] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022] Open
Abstract
Lsh, a chromatin remodeling protein of the SNF2 family, is critical for normal heterochromatin structure. In particular, DNA methylation at repeat elements, a hallmark of heterochromatin, is greatly reduced in Lsh(-/-) (KO) cells. Here, we examined the presumed nucleosome remodeling activity of Lsh on chromatin in the context of DNA methylation. We found that dynamic CG methylation was dependent on Lsh in embryonic stem cells. Moreover, we demonstrate that ATP function is critical for de novo methylation at repeat sequences. The ATP binding site of Lsh is in part required to promote stable association of the DNA methyltransferase 3b with the repeat locus. By performing nucleosome occupancy assays, we found distinct nucleosome occupancy in KO ES cells compared to WT ES cells after differentiation. Nucleosome density was restored to wild-type level by re-expressing wild-type Lsh but not the ATP mutant in KO ES cells. Our results suggest that ATP-dependent nucleosome remodeling is the primary molecular function of Lsh, which may promote de novo methylation in differentiating ES cells.
Collapse
Affiliation(s)
- Jianke Ren
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Victorino Briones
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Samantha Barbour
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Weishi Yu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Minoru Terashima
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
12
|
König A, Shcherbata HR. Soma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics. Biol Open 2015; 4:285-300. [PMID: 25661868 PMCID: PMC4359735 DOI: 10.1242/bio.201410553] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is known that signaling from the germline stem cell niche is required to maintain germline stem cell identity in Drosophila. However, it is not clear whether the germline stem-cell daughters differentiate by default (because they are physically distant from the niche) or whether additional signaling is necessary to initiate the differentiation program. Previously, we showed that ecdysteroid signaling cell non-autonomously regulates early germline differentiation via its soma-specific co-activator and co-repressor, Taiman and Abrupt. Now, we demonstrate that this regulation is modulated by the miRNA let-7, which acts in a positive feedback loop to confer ecdysone signaling robustness via targeting its repressor, the transcription factor Abrupt. This feedback loop adjusts ecdysteroid signaling in response to some stressful alterations in the external and internal conditions, which include temperature stress and aging, but not nutritional deprivation. Upon let-7 deficit, escort cells fail to properly differentiate: their shape, division, and cell adhesive characteristics are perturbed. These cells have confused cellular identity and form columnar-like rather than squamous epithelium and fail to send protrusions in between differentiating germline cysts, affecting soma-germline communication. Particularly, levels of the homophilic cell adhesion protein Cadherin, which recruits Wg signaling transducer β-catenin, are increased in mutant escort cells and, correspondingly, in the adjacent germline cells. Readjustment of heterotypic (soma-germline) cell adhesion modulates Wg signaling intensity in the germline, which in turn regulates histone modifications that promote expression of the genes necessary to trigger early germline differentiation. Thus, our data first show the intrinsic role for Wg signaling in the germline and support a model where the soma influences the tempo of germline differentiation in response to external conditions.
Collapse
Affiliation(s)
- Annekatrin König
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
13
|
Kronen MR, Schoenfelder KP, Klein AM, Nystul TG. Basolateral junction proteins regulate competition for the follicle stem cell niche in the Drosophila ovary. PLoS One 2014; 9:e101085. [PMID: 24991805 PMCID: PMC4084627 DOI: 10.1371/journal.pone.0101085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 11/26/2022] Open
Abstract
Epithelial stem cells are routinely lost or damaged during adult life and must therefore be replaced to maintain homeostasis. Recent studies indicate that stem cell replacement occurs through neutral competition in many types of epithelial tissues, but little is known about the factors that determine competitive outcome. The epithelial follicle stem cells (FSCs) in the Drosophila ovary are regularly lost and replaced during normal homeostasis, and we show that FSC replacement conforms to a model of neutral competition. In addition, we found that FSCs mutant for the basolateral junction genes, lethal giant larvae (lgl) or discs large (dlg), undergo a biased competition for niche occupancy characterized by increased invasion of neighboring FSCs and reduced loss. Interestingly, FSCs mutant for a third basolateral junction gene, scribble (scrib), do not exhibit biased competition, suggesting that Lgl and Dlg regulate niche competition through a Scrib-independent process. Lastly, we found that FSCs have a unique cell polarity characterized by broadly distributed adherens junctions and the lack of a mature apical domain. Collectively, these observations indicate that Lgl and Dlg promote the differentiation of FSC progeny to a state in which they are less prone to invade the neighboring niche. In addition, we demonstrate that the neutral drift model can be adapted to quantify non-neutral behavior of mutant clones.
Collapse
Affiliation(s)
- Maria R. Kronen
- University of California, San Francisco, Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, San Francisco, California, United States of America
| | - Kevin P. Schoenfelder
- University of California, San Francisco, Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, San Francisco, California, United States of America
| | - Allon M. Klein
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (TGN); (AMK)
| | - Todd G. Nystul
- University of California, San Francisco, Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, San Francisco, California, United States of America
- * E-mail: (TGN); (AMK)
| |
Collapse
|
14
|
Dowdle JA, Mehta M, Kass EM, Vuong BQ, Inagaki A, Egli D, Jasin M, Keeney S. Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genet 2013; 9:e1003945. [PMID: 24244200 PMCID: PMC3820798 DOI: 10.1371/journal.pgen.1003945] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations. The eukaryotic genome is packaged into a periodic nucleoprotein complex known as chromatin. Wrapping of DNA around nucleosomes, the basic repeat unit of chromatin, enables packing of long stretches of DNA into a compact nucleus but also impedes access by protein factors involved in essential cellular processes such as transcription, replication, recombination and repair. Chromatin remodeling factors are multi-protein complexes that utilize the energy released during ATP-hydrolysis to assemble, reposition, restructure and disassemble nucleosomes. These complexes disrupt histone-DNA contacts to ‘remodel’ the chromatin and grant access to the genome. Alternatively, access can also be denied to repress transcription, for example. Spermatogenesis, the developmental program that produces sperm, comprises a dramatic chromatin makeover and the induction of a transcriptional program that engages nearly one-third of the genome. Here we provide evidence suggesting that these large-scale alterations leave the genomic material vulnerable to spurious transcriptional changes which are normally repressed by ACF1 (BAZ1A in mammals), the defining member of the well-studied ACF/CHRAC chromatin remodeling complex. These findings indicate that Baz1a plays a previously unrealized role in male fertility and may represent a novel target for male contraceptive development.
Collapse
Affiliation(s)
- James A. Dowdle
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Monika Mehta
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Elizabeth M. Kass
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Bao Q. Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Dieter Egli
- The New York Stem Cell Foundation, New York, New York, United States of America
| | - Maria Jasin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, New York, United States of America
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Sahai-Hernandez P, Nystul TG. A dynamic population of stromal cells contributes to the follicle stem cell niche in the Drosophila ovary. Development 2013; 140:4490-8. [PMID: 24131631 DOI: 10.1242/dev.098558] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial stem cells are maintained within niches that promote self-renewal by providing signals that specify the stem cell fate. In the Drosophila ovary, epithelial follicle stem cells (FSCs) reside in niches at the anterior tip of the tissue and support continuous growth of the ovarian follicle epithelium. Here, we demonstrate that a neighboring dynamic population of stromal cells, called escort cells, are FSC niche cells. We show that escort cells produce both Wingless and Hedgehog ligands for the FSC lineage, and that Wingless signaling is specific for the FSC niche whereas Hedgehog signaling is active in both FSCs and daughter cells. In addition, we show that multiple escort cells simultaneously encapsulate germ cell cysts and contact FSCs. Thus, FSCs are maintained in a dynamic niche by a non-dedicated population of niche cells.
Collapse
Affiliation(s)
- Pankaj Sahai-Hernandez
- Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143-0452, USA
| | | |
Collapse
|
16
|
Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a007906. [PMID: 23024173 DOI: 10.1101/cshperspect.a007906] [Citation(s) in RCA: 556] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors are the major end point mediators of Wnt/Wingless signaling throughout metazoans. TCF/LEFs are multifunctional proteins that use their sequence-specific DNA-binding and context-dependent interactions to specify which genes will be regulated by Wnts. Much of the work to define their actions has focused on their ability to repress target gene expression when Wnt signals are absent and to recruit β-catenin to target genes for activation when Wnts are present. Recent advances have highlighted how these on/off actions are regulated by Wnt signals and stabilized β-catenin. In contrast to invertebrates, which typically contain one TCF/LEF protein that can both activate and repress Wnt targets, gene duplication and isoform complexity of the family in vertebrates have led to specialization, in which individual TCF/LEF isoforms have distinct activities.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | |
Collapse
|
17
|
The many faces and functions of β-catenin. EMBO J 2012; 31:2714-36. [PMID: 22617422 DOI: 10.1038/emboj.2012.150] [Citation(s) in RCA: 1253] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 02/07/2023] Open
Abstract
β-Catenin (Armadillo in Drosophila) is a multitasking and evolutionary conserved molecule that in metazoans exerts a crucial role in a multitude of developmental and homeostatic processes. More specifically, β-catenin is an integral structural component of cadherin-based adherens junctions, and the key nuclear effector of canonical Wnt signalling in the nucleus. Imbalance in the structural and signalling properties of β-catenin often results in disease and deregulated growth connected to cancer and metastasis. Intense research into the life of β-catenin has revealed a complex picture. Here, we try to capture the state of the art: we try to summarize and make some sense of the processes that regulate β-catenin, as well as the plethora of β-catenin binding partners. One focus will be the interaction of β-catenin with different transcription factors and the potential implications of these interactions for direct cross-talk between β-catenin and non-Wnt signalling pathways.
Collapse
|
18
|
Emelyanov AV, Vershilova E, Ignatyeva MA, Pokrovsky DK, Lu X, Konev AY, Fyodorov DV. Identification and characterization of ToRC, a novel ISWI-containing ATP-dependent chromatin assembly complex. Genes Dev 2012; 26:603-14. [PMID: 22426536 DOI: 10.1101/gad.180604.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SNF2-like motor proteins, such as ISWI, cooperate with histone chaperones in the assembly and remodeling of chromatin. Here we describe a novel, evolutionarily conserved, ISWI-containing complex termed ToRC (Toutatis-containing chromatin remodeling complex). ToRC comprises ISWI, Toutatis/TIP5 (TTF-I-interacting protein 5), and the transcriptional corepressor CtBP (C-terminal-binding protein). ToRC facilitates ATP-dependent nucleosome assembly in vitro. All three subunits are required for its maximal biochemical activity. The toutatis gene exhibits strong synthetic lethal interactions with CtBP. Thus, ToRC mediates, at least in part, biological activities of CtBP and Toutatis. ToRC subunits colocalize in euchromatic arms of polytene chromosomes. Furthermore, nuclear localization and precise distribution of ToRC in chromosomes are dependent on CtBP. ToRC is involved in CtBP-mediated regulation of transcription by RNA polymerase II in vivo. For instance, both Toutatis and CtBP are required for repression of genes of a proneural gene cluster, achaete-scute complex (AS-C), in Drosophila larvae. Intriguingly, native C-terminally truncated Toutatis isoforms do not associate with CtBP and localize predominantly to the nucleolus. Thus, Toutatis forms two alternative complexes that have differential distribution and can participate in distinct aspects of nuclear DNA metabolism.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Nucleosome remodeler SNF2L suppresses cell proliferation and migration and attenuates Wnt signaling. Mol Cell Biol 2012; 32:2359-71. [PMID: 22508985 DOI: 10.1128/mcb.06619-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ISWI is an evolutionarily conserved ATPase that catalyzes nucleosome remodeling in different macromolecular complexes. Two mammalian ISWI orthologs, SNF2H and SNF2L, are thought to have specialized functions despite their high sequence similarity. To date, the function of SNF2L in human cells has not been a focus of research. Newly established specific monoclonal antibodies and selective RNA interference protocols have now enabled a comprehensive characterization of loss-of-function phenotypes in human cells. In contrast to earlier results, we found SNF2L to be broadly expressed in primary human tissues. Depletion of SNF2L in HeLa cells led to enhanced proliferation and increased migration. These phenomena were explained by transcriptome profiling, which identified SNF2L as a modulator of the Wnt signaling network. The cumulative effects of SNF2L depletion on gene expression portray the cell in a state of activated Wnt signaling characterized by increased proliferation and chemotactic locomotion. Accordingly, high levels of SNF2L expression in normal melanocytes contrast with undetectable expression in malignant melanoma. In summary, our data document an inverse relationship between SNF2L expression and features characteristic of malignant cells.
Collapse
|
20
|
Steinberg XP, Hepp MI, Fernández García Y, Suganuma T, Swanson SK, Washburn M, Workman JL, Gutiérrez JL. Human CCAAT/enhancer-binding protein β interacts with chromatin remodeling complexes of the imitation switch subfamily. Biochemistry 2012; 51:952-62. [PMID: 22242598 DOI: 10.1021/bi201593q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcription factor C/EBPβ is involved in several cellular processes, such as proliferation, differentiation, and energy metabolism. This factor exerts its activity through recruitment of different proteins or protein complexes, including the ATP-dependent chromatin remodeling complex SWI/SNF. The C/EBPβ protein is found as three major isoforms, C/EBPβ1, -2, and -3. They are generated by translation at alternative AUG initiation codons of a unique mRNA, C/EBPβ1 being the full-length isoform. It has been found that C/EBPβ1 participates in terminal differentiation processes. Conversely, C/EBPβ2 and -3 promote cell proliferation and are involved in malignant progression in a number of tissues. The mechanisms by which C/EBPβ2 and -3 promote cell proliferation and tumor progression are not fully understood. In this work, we sought to identify proteins interacting with hC/EBPβ using a proteomics approach. We found that all three isoforms interact with hSNF2H and hACF, components of ACF and CHRAC chromatin remodeling complexes, which belong to the imitation switch subfamily. Additional protein-protein interaction studies confirmed this finding and also showed that hC/EBPβ directly interacts with hACF1. By overexpressing hC/EBPβ, hSNF2H, and hACF1 in HepG2 cells and analyzing variations in expression of cyclin D1 and other C/EBPβ target genes, we observed a functional interaction between C/EBPβ and SNF2H/ACF1, characterized mainly by suppression of C/EBPβ transactivation activity in the presence of SNF2H and ACF1. Consistent with these findings, induction of differentiation of HepG2 cells by 1% DMSO was accompanied by a reduction in the level of cyclin D1 expression and the appearance of hC/EBPβ, hSNF2H, and hACF1 on the promoter region of this gene.
Collapse
Affiliation(s)
- Ximena P Steinberg
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile 4070043
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Wnts are conserved, secreted signaling proteins that can influence cell behavior by stabilizing β-catenin. Accumulated β-catenin enters the nucleus, where it physically associates with T-cell factor (TCF) family members to regulate target gene expression in many developmental and adult tissues. Recruitment of β-catenin to Wnt response element (WRE) chromatin converts TCFs from transcriptional repressors to activators. This review will outline the complex interplay between factors contributing to TCF repression and coactivators working with β-catenin to regulate Wnt targets. In addition, three variations of the standard transcriptional switch model will be discussed. One is the Wnt/β-catenin symmetry pathway in Caenorhabditis elegans, where Wnt-mediated nuclear efflux of TCF is crucial for activation of targets. Another occurs in vertebrates, where distinct TCF family members are associated with repression and activation, and recent evidence suggests that Wnt signaling facilitates a "TCF exchange" on WRE chromatin. Finally, a "reverse switch" mechanism for target genes that are directly repressed by Wnt/β-catenin signaling occurs in Drosophila cells. The diversity of TCF regulatory mechanisms may help to explain how a small group of transcription factors can function in so many different contexts to regulate target gene expression.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Brestovitsky A, Sharf R, Mittelman K, Kleinberger T. The adenovirus E4orf4 protein targets PP2A to the ACF chromatin-remodeling factor and induces cell death through regulation of SNF2h-containing complexes. Nucleic Acids Res 2011; 39:6414-27. [PMID: 21546548 PMCID: PMC3159439 DOI: 10.1093/nar/gkr231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adenovirus E4 open-reading-frame 4 (E4orf4) protein regulates the progression of viral infection and when expressed individually it induces non-classical apoptosis in transformed cells. Here we show that E4orf4 associates with the ATP-dependent chromatin-remodeling factor ACF that consists of a sucrose non fermenting-2h (SNF2h) ATPase and an Acf1 regulatory subunit. Furthermore, E4orf4 targets protein phosphatase 2A (PP2A) to this complex and to chromatin. Obstruction of SNF2h activity inhibits E4orf4-induced cell death, whereas knockdown of Acf1 results in enhanced E4orf4-induced toxicity in both mammalian and yeast cells, and Acf1 overexpression inhibits E4orf4′s ability to downregulate early adenovirus gene expression in the context of viral infection. Knockdown of the Acf1 homolog, WSTF, inhibits E4orf4-induced cell death. Based on these results we suggest that the E4orf4–PP2A complex inhibits ACF and facilitates enhanced chromatin-remodeling activities of other SNF2h-containing complexes, such as WSTF–SNF2h. The resulting switch in chromatin remodeling determines life versus death decisions and contributes to E4orf4 functions during adenovirus infection.
Collapse
Affiliation(s)
- Anna Brestovitsky
- Department of Molecular Microbiology, Faculty of Medicine, Technion - Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | | | | | |
Collapse
|
23
|
Bhambhani C, Chang JL, Akey DL, Cadigan KM. The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of Wingless targets. EMBO J 2011; 30:2031-43. [PMID: 21468031 DOI: 10.1038/emboj.2011.100] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 03/10/2011] [Indexed: 01/08/2023] Open
Abstract
C-terminal-binding protein (CtBP) is a well-characterized transcriptional co-repressor that requires homo-dimerization for its activity. CtBP can both repress and activate Wingless nuclear targets in Drosophila. Here, we examine the role of CtBP dimerization in these opposing processes. CtBP mutants that cannot dimerize are able to promote Wingless signalling, but are defective in repressing Wingless targets. To further test the role of dimerization in repression, the positions of basic and acidic residues that form inter-molecular salt bridges in the CtBP dimerization interface were swapped. These mutants cannot homo-dimerize and are compromised for repression. However, their co-expression leads to hetero-dimerization and consequent repression of Wingless targets. Our results support a model where CtBP is a gene-specific regulator of Wingless signalling, with some targets requiring CtBP dimers for inhibition while other targets utilize CtBP monomers for activation of their expression. Functional interactions between CtBP and Pygopus, a nuclear protein required for Wingless signalling, support a model where monomeric CtBP acts downstream of Pygopus in activating some Wingless targets.
Collapse
Affiliation(s)
- Chandan Bhambhani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
24
|
Narayanan MS, Kushwaha M, Ersfeld K, Fullbrook A, Stanne TM, Rudenko G. NLP is a novel transcription regulator involved in VSG expression site control in Trypanosoma brucei. Nucleic Acids Res 2010; 39:2018-31. [PMID: 21076155 PMCID: PMC3064810 DOI: 10.1093/nar/gkq950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.
Collapse
Affiliation(s)
- Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
25
|
Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2010; 1:a002881. [PMID: 20066091 DOI: 10.1101/cshperspect.a002881] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
26
|
Soft skills turned into hard facts: nucleosome remodelling at developmental switches. Heredity (Edinb) 2010; 105:71-9. [DOI: 10.1038/hdy.2010.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
27
|
Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L, Shilatifard A. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 2010; 24:574-89. [PMID: 20203130 DOI: 10.1101/gad.1898410] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Epigenetic modifications of chromatin play an important role in the regulation of gene expression. KMT4/Dot1 is a conserved histone methyltransferase capable of methylating chromatin on Lys79 of histone H3 (H3K79). Here we report the identification of a multisubunit Dot1 complex (DotCom), which includes several of the mixed lineage leukemia (MLL) partners in leukemia such as ENL, AF9/MLLT3, AF17/MLLT6, and AF10/MLLT10, as well as the known Wnt pathway modifiers TRRAP, Skp1, and beta-catenin. We demonstrated that the human DotCom is indeed capable of trimethylating H3K79 and, given the association of beta-catenin, Skp1, and TRRAP, we investigated, and found, a role for Dot1 in Wnt/Wingless signaling in an in vivo model system. Knockdown of Dot1 in Drosophila results in decreased expression of a subset of Wingless target genes. Furthermore, the loss of expression for the Drosophila homologs of the Dot1-associated proteins involved in the regulation of H3K79 shows a similar reduction in expression of these Wingless targets. From yeast to human, specific trimethylation of H3K79 by Dot1 requires the monoubiquitination of histone H2B by the Rad6/Bre1 complex. Here, we demonstrate that depletion of Bre1, the E3 ligase required for H2B monoubiquitination, leads specifically to reduced bulk H3K79 trimethylation levels and a reduction in expression of many Wingless targets. Overall, our study describes for the first time the components of DotCom and links the specific regulation of H3K79 trimethylation by Dot1 and its associated factors to the Wnt/Wingless signaling pathway.
Collapse
Affiliation(s)
- Man Mohan
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pham CD, He X, Schnitzler GR. Divergent human remodeling complexes remove nucleosomes from strong positioning sequences. Nucleic Acids Res 2009; 38:400-13. [PMID: 19906705 PMCID: PMC2811002 DOI: 10.1093/nar/gkp1030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleosome positioning plays a major role in controlling the accessibility of DNA to transcription factors and other nuclear processes. Nucleosome positions after assembly are at least partially determined by the relative affinity of DNA sequences for the histone octamer. Nucleosomes can be moved, however, by a class of ATP dependent chromatin remodeling complexes. We recently showed that the human SWI/SNF remodeling complex moves nucleosomes in a sequence specific manner, away from nucleosome positioning sequences (NPSes). Here, we compare the repositioning specificity of five remodelers of diverse biological functions (hSWI/SNF, the SNF2h ATPase and the hACF, CHRAC and WICH complexes than each contain SNF2h) on 5S rDNA, MMTV and 601 NPS polynucleosomal templates. We find that all five remodelers act similarly to reduce nucleosome occupancy over the strongest NPSes, an effect that could directly contribute to the function of WICH in activating 5S rDNA transcription. While some differences were observed between complexes, all five remodelers were found to result in surprisingly similar nucleosome distributions. This suggests that remodeling complexes may share a conserved repositioning specificity, and that their divergent biological functions may largely arise from other properties conferred by complex-specific subunits.
Collapse
Affiliation(s)
- Chuong D Pham
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|
29
|
Buranapramest M, Chakravarti D. Chromatin remodeling and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:193-234. [PMID: 20374705 DOI: 10.1016/s1877-1173(09)87006-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear receptors (NRs) constitute a large family of ligand-dependent transcription factors that play key roles in development, differentiation, metabolism, and homeostasis. They participate in these processes by coordinating and regulating the expression of their target genes. The eukaryotic genome is packaged as chromatin and is generally inhibitory to the process of transcription. NRs overcome this barrier by recruiting two classes of chromatin remodelers, histone modifying enzymes and ATP-dependent chromatin remodelers. These remodelers alter chromatin structure at target gene promoters by posttranslational modification of histone tails and by disrupting DNA-histone interactions, respectively. In the presence of ligand, NRs promote transcription by recruiting remodeling enzymes that increase promoter accessibility to the basal transcription machinery. In the absence of ligand a subset of NRs recruit remodelers that establish and maintain a closed chromatin environment, to ensure efficient gene silencing. This chapter reviews the chromatin remodeling enzymes associated with NR gene control, with an emphasis on the mechanisms of NR-mediated repression.
Collapse
Affiliation(s)
- Manop Buranapramest
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
30
|
Song H, Spichiger-Haeusermann C, Basler K. The ISWI-containing NURF complex regulates the output of the canonical Wingless pathway. EMBO Rep 2009; 10:1140-6. [PMID: 19713963 DOI: 10.1038/embor.2009.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/22/2009] [Accepted: 06/15/2009] [Indexed: 11/09/2022] Open
Abstract
Wingless (Wg) signalling regulates the expression of its target genes through Pangolin, Armadillo and their interacting co-factors. In a genetic screen for Wg signalling components, we found that imitation switch (ISWI), a chromatin-remodelling ATPase, had a positive role in transducing the canonical Wg signal, promoting the expression of the Wg target senseless. ISWI is found in several chromatin-remodelling complexes, including nucleosome remodelling factor (NURF). The effect of interfering with the function of other components of the NURF complex in vivo mimics that of ISWI. The NURF complex is also required for the efficient expression of other Wg target genes. Armadillo interacts directly with the NURF complex in vitro and recruits it to Wg targets in cultured cells. Together, our results suggest that the ISWI-containing NURF complex functions as a co-activator of Armadillo to promote Wg-mediated transcription.
Collapse
Affiliation(s)
- Haiyun Song
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
31
|
Abstract
The canonical Wnt pathway has gathered much attention in recent years owing to its fundamental contribution to metazoan development, tissue homeostasis and human malignancies. Wnt target gene transcription is regulated by nuclear beta-catenin, and genetic assays have revealed various collaborating protein cofactors. Their daunting number and diverse nature, however, make it difficult to arrange an orderly picture of the nuclear Wnt transduction events. Yet, these findings emphasize that beta-catenin-mediated transcription affects chromatin. How does beta-catenin cope with chromatin regulation to turn on Wnt target genes?
Collapse
|