1
|
Hu X, Dong C, Zou D, Wei C, Wang Y, Li Z, Duan H, Li Z. Directed differentiation of human embryonic stem cells into conjunctival epithelial cells. Exp Cell Res 2024; 442:114227. [PMID: 39209142 DOI: 10.1016/j.yexcr.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.
Collapse
Affiliation(s)
- Xiangyue Hu
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Chunxiao Dong
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Dulei Zou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Chao Wei
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Yani Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zongren Li
- 970 Hospital of Chinese PLA Joint Logistic Support Force, Weihai, 264200, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
| | - Zongyi Li
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
| |
Collapse
|
2
|
Markert EK, Klein H, Viollet C, Rust W, Strobel B, Kauschke SG, Makovoz B, Neubauer H, Bakker RA, Blenkinsop TA. Transcriptional comparison of adult human primary Retinal Pigment Epithelium, human pluripotent stem cell-derived Retinal Pigment Epithelium, and ARPE19 cells. Front Cell Dev Biol 2022; 10:910040. [PMID: 36092714 PMCID: PMC9461284 DOI: 10.3389/fcell.2022.910040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
The therapeutic potential of pluripotent stem cells is great as they promise to usher in a new era of medicine where cells or organs may be prescribed to replace dysfunctional tissue. At the forefront are efforts in the eye to develop this technology as it lends itself to in vivo monitoring and sophisticated non-invasive imaging modalities. In the retina, retinal pigment epithelium (RPE) is the most promising replacement cell as it has a single layer, is relatively simple to transplant, and is associated with several eye diseases. However, after transplantation, the cells may transform and cause complications. This transformation may be partially due to incomplete maturation. With the goal of learning how to mature RPE, we compared induced pluripotent stem cell-derived RPE (iPSC-RPE) cells with adult human primary RPE (ahRPE) cells and the immortalized human ARPE-19 line. We cultured ARPE-19, iPSC-RPE, and ahRPE cells for one month, and evaluated morphology, RPE marker staining, and transepithelial electrical resistance (TEER) as quality control indicators. We then isolated RNA for bulk RNA-sequencing and DNA for genotyping. We genotyped ahRPE lines for the top age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR) risk allele polymorphisms. Transcriptome data verified that both adult and iPSC-RPE exhibit similar RPE gene expression signatures, significantly higher than ARPE-19. In addition, in iPSC-RPE, genes relating to stem cell maintenance, retina development, and muscle contraction were significantly upregulated compared to ahRPE. We compared ahRPE to iPSC-RPE in a model of epithelial-mesenchymal transition (EMT) and observed an increased sensitivity of iPSC-RPE to producing contractile aggregates in vitro which resembles incident reports upon transplantation. P38 inhibition was capable of inhibiting iPSC-RPE-derived aggregates. In summary, we find that the transcriptomic signature of iPSC-RPE conveys an immature RPE state which may be ameliorated by targeting "immature" gene regulatory networks.
Collapse
Affiliation(s)
- Elke K. Markert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Werner Rust
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Benjamin Strobel
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Stefan G. Kauschke
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Bar Makovoz
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Remko A. Bakker
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Timothy A. Blenkinsop
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Venters SJ, Mikawa T, Hyer J. Early divergence of central and peripheral neural retina precursors during vertebrate eye development. Dev Dyn 2014; 244:266-76. [PMID: 25329498 DOI: 10.1002/dvdy.24218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND During development of the vertebrate eye, optic tissue is progressively compartmentalized into functionally distinct tissues. From the central to the peripheral optic cup, the original optic neuroepithelial tissue compartmentalizes, forming retina, ciliary body, and iris. The retina can be further sub-divided into peripheral and central compartments, where the central domain is specialized for higher visual acuity, having a higher ratio and density of cone photoreceptors in most species. RESULTS Classically, models depict a segregation of the early optic cup into only two domains, neural and non-neural. Recent studies, however, uncovered discrete precursors for central and peripheral retina in the optic vesicle, indicating that the neural retina cannot be considered as a single unit with homogeneous specification and development. Instead, central and peripheral retina may be subject to distinct developmental pathways that underlie their specialization. CONCLUSIONS This review focuses on lineage relationships in the retina and revisits the historical context for segregation of central and peripheral retina precursors before overt eye morphogenesis.
Collapse
Affiliation(s)
- Sara J Venters
- Cardiovascular Research Institute, University of California, San Francisco, California; Department of Neurosurgery, University of California, San Francisco San Francisco, California
| | | | | |
Collapse
|
4
|
Dhouailly D, Pearton DJ, Michon F. The vertebrate corneal epithelium: From early specification to constant renewal. Dev Dyn 2014; 243:1226-41. [DOI: 10.1002/dvdy.24179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Danielle Dhouailly
- University Joseph Fourier; AGIM FRE CNRS 3405 Site Santé Centre Jean Roget La Tronche France
| | - David J. Pearton
- Oceanographic Research Institute; Marine Parade Durban South Africa
| | - Frederic Michon
- Institute of Biotechnology; Developmental Biology Program; University of Helsinki; Helsinki Finland
| |
Collapse
|
5
|
Maestro-de-las-Casas C, Pérez-Miguelsanz J, López-Gordillo Y, Maldonado E, Partearroyo T, Varela-Moreiras G, Martínez-Álvarez C. Maternal folic acid-deficient diet causes congenital malformations in the mouse eye. ACTA ACUST UNITED AC 2014; 97:587-96. [PMID: 24078476 DOI: 10.1002/bdra.23176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/13/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND The eye is a very complex structure derived from the neural tube, surface ectoderm, and migratory mesenchyme from a neural crest origin. Because structures that evolve from the neural tube may be affected by a folate/folic acid (FA) deficiency, the aim of this work was to investigate whether a maternal folic acid-deficient diet may cause developmental alterations in the mouse eye. METHODS Female C57BL/6J mice (8 weeks old) were assigned into two different folic acid groups for periods ranging between 2 and 16 weeks. Animals were killed at gestation day 17. Hepatic folate was analyzed, and the eyes from 287 fetuses were macroscopically studied, sectioned and immunolabeled with anti-transforming growth factor (TGF)-β2 and anti-TGF-βRII. RESULTS Mice exposed to a FA-deficient diet exhibited numerous eye macroscopic anomalies, such as anophthalmia and microphthalmia. Microscopically, the eye was the most affected organ (43.7% of the fetuses). The highest incidence of malformations occurred from the 8th week onward. A statistically significant linear association between the number of maternal weeks on the FA-deficient diet and embryonic microscopic eye malformations was observed. The optic cup derivatives and structures forming the eye anterior segment showed severe abnormalities. In addition, TGF-β2 and TGF-βRII expression in the eye was also altered. CONCLUSION This study suggests that an adequate folic acid/folate status plays a key role in the formation of ocular tissues and structures, whereas a vitamin deficiency is negatively associated with a normal eye development even after a short-term exposure.
Collapse
Affiliation(s)
- Carmen Maestro-de-las-Casas
- Departamento de Anatomía y Embriología Humana I. Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Collomb E, Yang Y, Foriel S, Cadau S, Pearton DJ, Dhouailly D. The corneal epithelium and lens develop independently from a common pool of precursors. Dev Dyn 2013; 242:401-13. [PMID: 23335276 DOI: 10.1002/dvdy.23925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/23/2012] [Accepted: 12/24/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The corneal epithelium (CE) overlays a stroma, which is derived from neural crest cells, and appears to be committed during chick development, but appears still labile in adult rabbit. Its specification was hitherto regarded as resolved and dependent upon the lens, although without experimental support. Here, we challenged CE fate by changing its environment at different stages. RESULTS Recombination with a dermis showed that CE commitment is linked to stroma formation, which results in Pax6 stabilization in both species. Surgical ablation shows that CE specification has already taken place when the lens placode invaginates, while removal of the early lens placode led to lens renewal. To block lens formation, bone morphogenetic protein (BMP) signaling, one of its last inducing factors, was inhibited by over-expression of Gremlin in the ocular ectoderm. This resulted in lens-less embryos which formed a corneal epithelium if they survived 2 weeks. CONCLUSION The corneal epithelium and lens share a common pool of precursors. The adoption of the CE fate might be dependent on the loss of a lens placode favoring environment. The corneal fate is definitively stabilized by the migration of Gremlin-expressing neural crest cells in the lens peripheral ectoderm.
Collapse
Affiliation(s)
- Elodie Collomb
- FRE CNRS 3405, AGIM, Université Joseph Fourier Grenoble, Site Santé, France
| | | | | | | | | | | |
Collapse
|
7
|
Lachke SA, Maas RL. Building the developmental oculome: systems biology in vertebrate eye development and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:305-323. [PMID: 20836031 DOI: 10.1002/wsbm.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate eye is a sophisticated multicomponent organ that has been actively studied for over a century, resulting in the identification of the major embryonic and molecular events involved in its complex developmental program. Data gathered so far provides sufficient information to construct a rudimentary network of the various signaling molecules, transcription factors, and their targets for several key stages of this process. With the advent of genomic technologies, there has been a rapid expansion in our ability to collect and process biological information, and the use of systems-level approaches to study specific aspects of vertebrate eye development has already commenced. This is beginning to result in the definition of the dynamic developmental networks that operate in ocular tissues, and the interactions of such networks between coordinately developing ocular tissues. Such an integrative understanding of the eye by a comprehensive systems-level analysis can be termed the 'oculome', and that of serial developmental stages of the eye as it transits from its initiation to a fully formed functional organ represents the 'developmental oculome'. Construction of the developmental oculome will allow novel mechanistic insights that are essential for organ regeneration-based therapeutic applications, and the generation of computational models for eye disease states to predict the effects of drugs. This review discusses our present understanding of two of the individual components of the developing vertebrate eye--the lens and retina--at both the molecular and systems levels, and outlines the directions and tools required for construction of the developmental oculome.
Collapse
Affiliation(s)
- Salil A Lachke
- Division of Genetics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard L Maas
- Division of Genetics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|