1
|
Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med 2020; 27:314-331. [PMID: 33309601 DOI: 10.1016/j.molmed.2020.11.006] [Citation(s) in RCA: 358] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.
| | - Elisabetta Dejana
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Donald M McDonald
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
PRL-2 phosphatase is required for vascular morphogenesis and angiogenic signaling. Commun Biol 2020; 3:603. [PMID: 33097786 PMCID: PMC7584612 DOI: 10.1038/s42003-020-01343-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Protein tyrosine phosphatases are essential modulators of angiogenesis and have been identified as novel therapeutic targets in cancer and anti-angiogenesis. The roles of atypical Phosphatase of Regenerative Liver (PRL) phosphatases in this context remain poorly understood. Here, we investigate the biological function of PRL phosphatases in developmental angiogenesis in the postnatal mouse retina and in cell culture. We show that endothelial cells in the retina express PRL-2 encoded by the Ptp4a2 gene, and that inducible endothelial and global Ptp4a2 mutant mice exhibit defective retinal vascular outgrowth, arteriovenous differentiation, and sprouting angiogenesis. Mechanistically, PTP4A2 deletion limits angiogenesis by inhibiting endothelial cell migration and the VEGF-A, DLL-4/NOTCH-1 signaling pathway. This study reveals the importance of PRL-2 as a modulator of vascular development.
Collapse
|
3
|
The protein tyrosine phosphatase PTPRJ/DEP-1 contributes to the regulation of the Notch-signaling pathway and sprouting angiogenesis. Angiogenesis 2019; 23:145-157. [DOI: 10.1007/s10456-019-09683-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
|
4
|
Rosca AM, Mitroi DN, Cismasiu V, Badea R, Necula-Petrareanu G, Preda MB, Niculite C, Tutuianu R, Szedlacsek S, Burlacu A. Collagen regulates the ability of endothelial progenitor cells to protect hypoxic myocardium through a mechanism involving miR-377/VE-PTP axis. J Cell Mol Med 2018; 22:4700-4708. [PMID: 30044046 PMCID: PMC6156385 DOI: 10.1111/jcmm.13712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
The possibility to employ stem/progenitor cells in the cardiovascular remodelling after myocardial infarction is one of the main queries of regenerative medicine. To investigate whether endothelial progenitor cells (EPCs) participate in the restoration of hypoxia-affected myocardium, we used a co-culture model that allowed the intimate interaction between EPCs and myocardial slices, mimicking stem cell transplantation into the ischaemic heart. On this model, we showed that EPCs engrafted to some extent and only transiently survived into the host tissue, yet produced visible protective effects, in terms of angiogenesis and protection against apoptosis and identified miR-377-VE-PTP axis as being involved in the protective effects of EPCs in hypoxic myocardium. We also showed that collagen, the main component of the myocardial scar, was important for these protective effects by preserving VE-PTP levels, which were otherwise diminished by miR-377. By this, a good face of the scar is revealed, which was so far perceived as having only detrimental impact on the exogenously delivered stem/progenitor cells by affecting not only the engraftment, but also the general protective effects of stem cells.
Collapse
Affiliation(s)
- Ana-Maria Rosca
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Daniel Nicolae Mitroi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | | | - Rodica Badea
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | | | - Raluca Tutuianu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Stefan Szedlacsek
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
5
|
Bilotta A, Dattilo V, D'Agostino S, Belviso S, Scalise S, Bilotta M, Gaudio E, Paduano F, Perrotti N, Florio T, Fusco A, Iuliano R, Trapasso F. A novel splice variant of the protein tyrosine phosphatase PTPRJ that encodes for a soluble protein involved in angiogenesis. Oncotarget 2018; 8:10091-10102. [PMID: 28052032 PMCID: PMC5354644 DOI: 10.18632/oncotarget.14350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/13/2016] [Indexed: 02/01/2023] Open
Abstract
PTPRJ is a receptor protein tyrosine phosphatase with tumor suppressor activity. Very little is known about the role of PTPRJ ectodomain, although recently both physiological and synthetic PTPRJ ligands have been identified. A putative shorter spliced variant, coding for a 539 aa protein corresponding to the extracellular N-terminus of PTPRJ, is reported in several databases but, currently, no further information is available. Here, we confirmed that the PTPRJ short isoform (named sPTPRJ) is a soluble protein secreted into the supernatant of both endothelial and tumor cells. Like PTPRJ, also sPTPRJ undergoes post-translational modifications such as glycosylation, as assessed by sPTPRJ immunoprecipitation. To characterize its functional activity, we performed an endothelial cell tube formation assay and a wound healing assay on HUVEC cells overexpressing sPTPRJ and we found that sPTPRJ has a proangiogenic activity. We also showed that sPTPRJ expression down-regulates endothelial adhesion molecules, that is a hallmark of proangiogenic activity. Moreover, sPTPRJ mRNA levels in human high-grade glioma, one of the most angiogenic tumors, are higher in tumor samples compared to controls. Further studies will be helpful not only to clarify the way sPTPRJ works but also to supply clues to circumvent its activity in cancer therapy.
Collapse
Affiliation(s)
- Anna Bilotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of Scienze della Salute, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Sabrina D'Agostino
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Belviso
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Scalise
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariaconcetta Bilotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Eugenio Gaudio
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Francesco Paduano
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Nicola Perrotti
- Department of Scienze della Salute, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Tullio Florio
- Laboratory of Pharmacology, Dept. of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University Federico II of Napoli, Napoli, Italy
| | - Rodolfo Iuliano
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
7
|
Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, Simons M. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 2014; 130:902-9. [PMID: 24982127 DOI: 10.1161/circulationaha.114.009683] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Regulation of vascular endothelial growth factor receptor-2 (VEGFR2) signaling is a control point that determines the extent of vascular tree formation. Recent studies demonstrated an important role played by VEGFR2 endothelial trafficking in control of its activity and suggested the involvement of a phosphotyrosine phosphatase 1b (PTP1b) in this process. This study was designed to define the role of PTP1b in endothelial VEGFR2 signaling and its role in regulation of angiogenesis and arteriogenesis. METHODS AND RESULTS We generated mice carrying an endothelial-specific deletion of PTP1b and examined the effect of this knockout on VEGF signaling, angiogenesis, and arteriogenesis in vitro and in vivo. PTP1b knockout endothelial cells had increased VEGF-dependent activation of extracellular signal-regulated kinase signaling, sprouting, migration, and proliferation compared with controls. Endothelial PTP1b null mice had increased retinal and Matrigel implant angiogenesis and accelerated wound healing, pointing to enhanced angiogenesis. Increased arteriogenesis was demonstrated by observations of faster recovery of arterial blood flow and large numbers of newly formed arterioles in the hindlimb ischemia mouse model. PTP1b endothelial knockout also rescued impaired blood flow recovery after common femoral artery ligation in synectin null mice. CONCLUSIONS PTP1b is a key regulator of endothelial VEGFR2 signaling and plays an important role in regulation of the extent of vascular tree formation.
Collapse
Affiliation(s)
- Anthony A Lanahan
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Diana Lech
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Alexandre Dubrac
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Jiasheng Zhang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Zhen W Zhuang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| | - Michael Simons
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (A.A.L., D.L., A.D., J.Z., Z.W.Z., A.E., M.S.) and the Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
8
|
Paardekooper Overman J, den Hertog J. Zebrafish as a model to study PTPs during development. Methods 2014; 65:247-53. [PMID: 23974070 DOI: 10.1016/j.ymeth.2013.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022] Open
|
9
|
Abstract
Cerebral cavernous malformation is a clinically well-defined microvascular disorder predisposing to stroke; however, the major phenotype observed in zebrafish is the cardiac defect, specifically an enlarged heart. Less effort has been made to explore this phenotypic discrepancy between human and zebrafish. Given the fact that the gene products from Ccm1/Ccm2 are nearly identical between the two species, the common sense has dictated that the zebrafish animal model would provide a great opportunity to dissect the detailed molecular function of Ccm1/Ccm2 during angiogenesis. We recently reported on the cellular role of the Ccm1 gene in biochemical processes that permit proper angiogenic microvascular development in the zebrafish model. In the course of this experimentation, we encountered a vast amount of recent research on the relationship between dysfunctional angiogenesis and cardiovascular defects in zebrafish. Here we compile the findings of our research with the most recent contributions in this field and glean conclusions about the effect of defective angiogenesis on the developing cardiovascular system. Our conclusion also serves as a bridge for the phenotypic discrepancy between humans and animal models, which might provide some insights into future translational research on human stroke.
Collapse
|
10
|
Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM. Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2013; 2:a006684. [PMID: 22553495 DOI: 10.1101/cshperspect.a006684] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The zebrafish has emerged as an excellent vertebrate model system for studying blood and lymphatic vascular development. The small size, external and rapid development, and optical transparency of zebrafish embryos are some of the advantages the zebrafish model system offers. Multiple well-established techniques have been developed for imaging and functionally manipulating vascular tissues in zebrafish embryos, expanding on and amplifying these basic advantages and accelerating use of this model system for studying vascular development. In the past decade, studies performed using zebrafish as a model system have provided many novel insights into vascular development. In this article we discuss the amenability of this model system for studying blood vessel development and review contributions made by this system to our understanding of vascular development.
Collapse
Affiliation(s)
- Aniket V Gore
- Program in Genomics of Differentiation, Laboratory of Molecular Genetics, Section on Vertebrate Organogenesis, NICHD, NIH, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
11
|
Chen D, Li L, Tu X, Yin Z, Wang Q. Functional characterization of Klippel–Trenaunay syndrome gene AGGF1 identifies a novel angiogenic signaling pathway for specification of vein differentiation and angiogenesis during embryogenesis. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds501] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
12
|
Gomez G, Lee JH, Veldman MB, Lu J, Xiao X, Lin S. Identification of vascular and hematopoietic genes downstream of etsrp by deep sequencing in zebrafish. PLoS One 2012; 7:e31658. [PMID: 22438865 PMCID: PMC3306315 DOI: 10.1371/journal.pone.0031658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
The transcription factor etsrp/Er71/Etv2 is a master control gene for vasculogenesis in all species studied to date. It is also required for hematopoiesis in zebrafish and mice. Several novel genes expressed in vasculature have been identified through transcriptional profiling of zebrafish embryos overexpressing etsrp by microarrays. Here we re-examined this transcriptional profile by Illumina RNA-sequencing technology, revealing a substantially increased number of candidate genes regulated by etsrp. Expression studies of 50 selected candidate genes from this dataset resulted in the identification of 39 new genes that are expressed in vascular cells. Regulation of these genes by etsrp was confirmed by their ectopic induction in etsrp overexpressing and decreased expression in etsrp deficient embryos. Our studies demonstrate the effectiveness of the RNA-sequencing technology to identify biologically relevant genes in zebrfish and produced a comprehensive profile of genes previously unexplored in vascular endothelial cell biology.
Collapse
Affiliation(s)
- Gustavo Gomez
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | | | | | | | | |
Collapse
|
13
|
Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S, Couchman JR. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol Biol Cell 2011; 22:3609-24. [PMID: 21813734 PMCID: PMC3183016 DOI: 10.1091/mbc.e11-02-0099] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proteoglycan syndecan-2 is a novel ligand for the tyrosine phosphatase receptor CD148, an interaction that stimulates a signaling pathway leading to integrin-mediated cell adhesion. The pathway involves SRC and PI3 kinases and is an example of cell surface receptor cross-talk influencing integrin-mediated cellular processes. Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream β1 integrin–mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of interaction with CD148. A mechanism for the transduction of the signal from CD148 to β1 integrins is elucidated requiring Src kinase and potential implication of the C2β isoform of phosphatidylinositol 3 kinase. Our data uncover a novel pathway for β1 integrin–mediated adhesion of importance in cellular processes such as angiogenesis and inflammation.
Collapse
Affiliation(s)
- James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Wang B, Zhou S, Chen Q, Xie X, Huang G, Wang J, Zhoua S, Ma X. Hairy-related transcription factor 2 is not potentially related to congenital heart disease in Chinese patients. Int J Cardiol 2011; 146:415-6. [PMID: 20181399 DOI: 10.1016/j.ijcard.2009.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/04/2009] [Indexed: 11/25/2022]
Abstract
Congenital heart disease (CHD) is the malformation of the heart during embryonic development, contributing to the inadequate function of the heart. A recently suggested gene hairy-related transcription factor 2 (HEY2), is an important determinant of mammalian heart development and functions thereby. We had preformed a direct sequencing within 768 Chinese CHD patients in the HEY2 gene. However, we did not reveal any diagnostic alterations in the coding regions by direct sequencing in HEY2, nevertheless this work expands our knowledge of the causes of CHD in the other way.
Collapse
Affiliation(s)
- Binbin Wang
- Graduate school, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Gührs KH, Friedrich S, Nakamura M, Mawrin C, Böhmer FD. Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol 2010; 21:405-18. [PMID: 21091576 DOI: 10.1111/j.1750-3639.2010.00464.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DEP-1/PTPRJ is a transmembrane protein-tyrosine phosphatase which has been proposed as a suppressor of epithelial tumors. We have found loss of heterozygosity (LOH) of the PTPRJ gene and loss of DEP-1 protein expression in a subset of human meningiomas. RNAi-mediated suppression of DEP-1 in DEP-1 positive meningioma cell lines caused enhanced motility and colony formation in semi-solid media. Cells devoid of DEP-1 exhibited enhanced signaling of endogenous platelet-derived growth factor (PDGF) receptors, and reduced paxillin phosphorylation upon seeding. Moreover, DEP-1 loss caused diminished adhesion to different matrices, and impaired cell spreading. DEP-1-deficient meningioma cells exhibited invasive growth in an orthotopic xenotransplantation model in nude mice, indicating that elevated motility translates into a biological phenotype in vivo. We propose that negative regulation of PDGF receptor signaling and positive regulation of adhesion signaling by DEP-1 cooperate in inhibition of meningioma cell motility, and possibly tumor invasiveness. These phenotypes of DEP-1 loss reveal functions of DEP-1 in adherent cells, and may be more generally relevant for tumorigenesis.
Collapse
Affiliation(s)
- Astrid Petermann
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cerebral cavernous malformations (CCM) are characterized by abnormal dilated intracranial capillaries that predispose to hemorrhage. The development of some CCMs in humans has been attributed to mutations in the CCM1 genes. Currently, contradictory results have been generated regarding the vascular endothelial cell population changes in Ccm1 deficiency in zebrafish. We hypothesize that the inconsistent results simply reflect the spatial and temporal difference for the observed vascular endothelial cells during zebrafish embryonic development. Using high resolution images in vivo, we demonstrated that the loss of Ccm1 in zebrafish embryos leads to marked increases in apoptosis in vascular endothelium at the end stage of microvascular angiogenesis. In vivo zebrafish studies were further substantiated by in vitro findings in human endothelial cells that elucidated the biochemical pathways of CCM1 deficiency. We found that that loss of CCM1 in vitro promotes apoptosis through decreased activation of the integrin-linked kinase survival signaling pathway. In summary, Ccm1 has been identified as a key modulator in maintaining microvascular integrity during zebrafish embryonic angiogenesis.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Daniele Rigamonti
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmed Badr
- COE for Neurosciences, Departments of Anesthesiology, Biomedical Sciences, Neurosurgery, Texas Tech University Health Science Center, 4800 Alberta Avenue, El Paso, TX 79905, USA
| | - Jun Zhang
- COE for Neurosciences, Departments of Anesthesiology, Biomedical Sciences, Neurosurgery, Texas Tech University Health Science Center, 4800 Alberta Avenue, El Paso, TX 79905, USA
| |
Collapse
|
17
|
Kume T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol 2010; 25:637-46. [PMID: 20238301 PMCID: PMC2899674 DOI: 10.14670/hh-25.637] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The groundbreaking discovery about arterial and venous expression of ephrinB2 and EphB4, respectively, in early embryonic development has led to a new paradigm for vascular research, providing compelling evidence that arterial and venous endothelial cells are established by genetic mechanisms before circulation begins. For arterial specification, vascular endothelial growth factor (VEGF) induces expression of Notch signaling genes, including Notch1 and its ligand, Delta-like 4 (Dll4), and Foxc1 and Foxc2 transcription factors directly regulate Dll4 expression. Upon activation of Notch signaling, the Notch downstream genes, Hey1/2 in mice or gridlock in zebrafish, further promote arterial differentiation. On the other hand, the orphan nuclear receptor COUP-TFII is a determinant factor for venous specification by inhibiting expression of arterial specific genes, including Nrp1 and Notch. After arterial and venous endothelial cells differentiate, a subpopulation of venous endothelial cells is thought to become competent to acquire lymphatic endothelial cell fate by progressively expressing the transcription factors Sox18 and Prox1 to differentiate into lymphatic endothelial cells. Therefore, it has now evident that arterial-venous cell fate determination and subsequent lymphatic development are regulated by the multi-step regulatory system associated with the key signaling pathways and transcription factors. Furthermore, new signaling molecules as additional regulators in these processes have recently been identified. As the mechanistic basis for a link between signaling pathways and transcriptional networks in arterial, venous and lymphatic endothelial cells begins to be uncovered, it is now time to summarize the literature on this exciting topic and provide perspectives for future research in the field.
Collapse
Affiliation(s)
- Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F, Deutsch U, Nottebaum AF, Vestweber D. VE-PTP controls blood vessel development by balancing Tie-2 activity. ACTA ACUST UNITED AC 2009; 185:657-71. [PMID: 19451274 PMCID: PMC2711575 DOI: 10.1083/jcb.200811159] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effects of VE-PTP gene disruption exemplified by vessel enlargement in allantois explants. These effects require the presence of the angiopoietin receptor Tie-2. Analyzing the mechanism we found that anti-VE-PTP antibodies trigger endocytosis and selectively affect Tie-2-associated, but not VE-cadherin-associated VE-PTP. Dissociation of VE-PTP triggers the activation of Tie-2, leading to enhanced endothelial cell proliferation and enlargement of vascular structures through activation of Erk1/2. Importantly, the antibody effect on vessel enlargement is also observed in newborn mice. We conclude that VE-PTP is required to balance Tie-2 activity and endothelial cell proliferation, thereby controlling blood vessel development and vessel size.
Collapse
Affiliation(s)
- Mark Winderlich
- Max-Planck-Institute of Molecular Biomedicine, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|