1
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Basement membranes are crucial for proper olfactory placode shape, position and boundary with the brain, and for olfactory axon development. eLife 2024; 12:RP92004. [PMID: 39713923 DOI: 10.7554/elife.92004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.
Collapse
Affiliation(s)
- Pénélope Tignard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Karen Pottin
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Audrey Geeverding
- Imaging Facility, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8256), Institut de Biologie Paris-Seine (IBPS), Adaptation Biologique et Vieillissement, Paris, France
| | - Mélody Cabrera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Coralie Fouquet
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Mathilde Liffran
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Jonathan Fouchard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
2
|
Cadena MA, Sing A, Taylor K, Jin L, Ning L, Amoli MS, Singh Y, The Brain Organoid Hub, Lanjewar SN, Tomov ML, Serpooshan V, Sloan SA. A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development. Adv Healthc Mater 2024; 13:e2401603. [PMID: 38815975 PMCID: PMC11518656 DOI: 10.1002/adhm.202401603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high-throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long-term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases.
Collapse
Affiliation(s)
- Melissa A. Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kylie Taylor
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Yamini Singh
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - The Brain Organoid Hub
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha N. Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, US
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Laminin γ1-dependent basement membranes are instrumental to ensure proper olfactory placode shape, position and boundary with the brain, as well as olfactory axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547040. [PMID: 39253416 PMCID: PMC11383033 DOI: 10.1101/2023.06.29.547040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo .
Collapse
|
4
|
Anitei M, Bruno F, Valkova C, Dau T, Cirri E, Mestres I, Calegari F, Kaether C. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell Mol Life Sci 2024; 81:334. [PMID: 39115595 PMCID: PMC11335259 DOI: 10.1007/s00018-024-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.
Collapse
Affiliation(s)
- Mihaela Anitei
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Francesca Bruno
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christina Valkova
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Iván Mestres
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Federico Calegari
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Kaether
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany.
| |
Collapse
|
5
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
7
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
8
|
Isik M, Eylem CC, Haciefendioglu T, Yildirim E, Sari B, Nemutlu E, Emregul E, Okesola BO, Derkus B. Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction. Biomater Sci 2021; 9:8270-8284. [PMID: 34766605 DOI: 10.1039/d1bm01350e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration.
Collapse
Affiliation(s)
- Melis Isik
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey.
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Turkey
| | | | - Erol Yildirim
- Chemistry Department, Middle East Technical University, 06800 Ankara, Turkey.,Department of Polymer Science and Technology, Middle East Technical University, 06800 Ankara, Turkey.,Department of Micro and Nanotechnology, Middle East Technical University, 06800 Ankara, Turkey
| | - Buse Sari
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey. .,Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emel Emregul
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey.
| | - Babatunde O Okesola
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK. .,School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey. .,Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey
| |
Collapse
|
9
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
10
|
Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021; 22:593-615. [PMID: 34376834 PMCID: PMC8612873 DOI: 10.1038/s41583-021-00496-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivian R Feig
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Henry T Greely
- Stanford Law School, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Amran A, Pigatto L, Pocock R, Gopal S. Functions of the extracellular matrix in development: Lessons from Caenorhabditis elegans. Cell Signal 2021; 84:110006. [PMID: 33857577 DOI: 10.1016/j.cellsig.2021.110006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Cell-extracellular matrix interactions are crucial for the development of an organism from the earliest stages of embryogenesis. The main constituents of the extracellular matrix are collagens, laminins, proteoglycans and glycosaminoglycans that form a network of interactions. The extracellular matrix and its associated molecules provide developmental cues and structural support from the outside of cells during development. The complex nature of the extracellular matrix and its ability for continuous remodeling poses challenges when investigating extracellular matrix-based signaling during development. One way to address these challenges is to employ invertebrate models such as Caenorhabditis elegans, which are easy to genetically manipulate and have an invariant developmental program. C. elegans also expresses fewer extracellular matrix protein isoforms and exhibits reduced redundancy compared to mammalian models, thus providing a simpler platform for exploring development. This review summarizes our current understanding of how the extracellular matrix controls the development of neurons, muscles and the germline in C. elegans.
Collapse
Affiliation(s)
- Aqilah Amran
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Lara Pigatto
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia; Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Ishii S, Ashino T, Fujimori H, Numazawa S. Reactive sulfur species inhibit the migration of PDGF-treated vascular smooth muscle cells by blocking the reactive oxygen species-regulated Akt signaling pathway. Free Radic Res 2021; 55:186-197. [PMID: 33641584 DOI: 10.1080/10715762.2021.1887485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cell (VSMC) migration contributes to vascular remodeling after injury, whereas oxidative stress generated through dysfunctional redox homeostasis induces hypermigration, leading to arteriosclerosis. Platelet-derived growth factor (PDGF)-induced reactive oxygen species (ROS) serve as intracellular signaling molecules in VSMCs. Reactive sulfur species (RSS) may serve as a biological defense system because of the antioxidative properties of highly nucleophilic sulfane sulfur. However, insufficient information is available on its function in PDGF-induced VSMC migration. Here we show that PDGF significantly increased the levels of intracellular sulfane sulfur and that intracellular sulfane sulfur donors, donor 5a and Na2S4, inhibited the increase in ROS levels in PDGF-treated VSMCs and inhibited their migration. Consistent with the migration results, sulfane sulfur donors inhibited Akt phosphorylation, a downstream signaling molecule in the PDGF cascade, without affecting the autophosphorylation of PDGF receptor-β. Further, sulfane sulfur donors inhibited vinculin and paxillin recruitment to the leading edge of VSMCs in response to PDGF to decrease focal adhesion formation. These findings suggest that RSS are required for PDGF-stimulated VSMC migration through the regulation of the ROS-regulated Akt pathway, which may contribute to focal adhesion formation. Our findings provide insight into RSS as novel regulators of vascular redox homeostasis.
Collapse
Affiliation(s)
- Shunichi Ishii
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Hiroki Fujimori
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan.,Pharmacological Research Center, Showa University, Tokyo, Japan
| |
Collapse
|
13
|
Amin S, Borrell V. The Extracellular Matrix in the Evolution of Cortical Development and Folding. Front Cell Dev Biol 2020; 8:604448. [PMID: 33344456 PMCID: PMC7744631 DOI: 10.3389/fcell.2020.604448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
The evolution of the mammalian cerebral cortex leading to humans involved a remarkable sophistication of developmental mechanisms. Specific adaptations of progenitor cell proliferation and neuronal migration mechanisms have been proposed to play major roles in this evolution of neocortical development. One of the central elements influencing neocortex development is the extracellular matrix (ECM). The ECM provides both a structural framework during tissue formation and to present signaling molecules to cells, which directly influences cell behavior and movement. Here we review recent advances in the understanding of the role of ECM molecules on progenitor cell proliferation and neuronal migration, and how these contribute to cerebral cortex expansion and folding. We discuss how transcriptomic studies in human, ferret and mouse identify components of ECM as being candidate key players in cortex expansion during development and evolution. Then we focus on recent functional studies showing that ECM components regulate cortical progenitor cell proliferation, neuron migration and the mechanical properties of the developing cortex. Finally, we discuss how these features differ between lissencephalic and gyrencephalic species, and how the molecular evolution of ECM components and their expression profiles may have been fundamental in the emergence and evolution of cortex folding across mammalian phylogeny.
Collapse
Affiliation(s)
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|
14
|
Song R, Zhang L. Cardiac ECM: Its Epigenetic Regulation and Role in Heart Development and Repair. Int J Mol Sci 2020; 21:ijms21228610. [PMID: 33203135 PMCID: PMC7698074 DOI: 10.3390/ijms21228610] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment, and serves essential structural and regulatory roles in establishing and maintaining tissue architecture and cellular function. The patterns of molecular and biochemical ECM alterations in developing and adult hearts depend on the underlying injury type. In addition to exploring how the ECM regulates heart structure and function in heart development and repair, this review conducts an inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Rui Song
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| | - Lubo Zhang
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| |
Collapse
|
15
|
Wu AL, Liu YT, Chou HD, Chuang LH, Chen KJ, Chen YP, Liu L, Yeung L, Wang NK, Hwang YS, Wu WC, Lai CC. Role of growth factors and internal limiting membrane constituents in müller cell migration. Exp Eye Res 2020; 202:108352. [PMID: 33166502 DOI: 10.1016/j.exer.2020.108352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of growth factors and internal limiting membrane components on Müller cell migration. We studied the effects of epidermal growth factor (EGF), fibroblast growth factor (FGF), somatomedin (IGF-1), platelet derived growth factor (PDGF), and stromal cell-derived factor-1 alpha (SDF-1α) as well as collagen IV, laminin, and fibronectin on the proliferative and migratory activities of rat Müller cells in vitro. A water soluble tetrazolium-1 assay was used to quantify the viability of Müller cells in respective cultures, and analysis was performed using an enzyme-linked immunosorbent assay reader. All the factors examined had significant proliferative effects on cultured Müller cells (p < .05). A two-well Ibidi silicone culture insert was used to assess Müller cell migration. Müller cells cultured in EGF, FGF, IGF-1, collagen IV, and laminin but not in SDF, PDGF, or fibronectin effectively increased the cell migratory activity (p < .001). In addition, combined EGF and collagen IV, combined FGF and collagen IV, and combined IGF-1 and laminin exhibited more significant (p < .001) effects on Müller cell migration compared with culture a single factor. In summary, this study revealed the combinatorial effects of various growth factors and individual internal limiting membrane constituents. This may assist Müller cell migration together with the macular hole healing process.
Collapse
Affiliation(s)
- An-Lun Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Ya-Tung Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Da Chou
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lan-Hsin Chuang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Po Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Laura Liu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ling Yeung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
16
|
Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 2019; 20:318-329. [DOI: 10.1038/s41583-019-0148-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
18
|
Long KR, Huttner WB. How the extracellular matrix shapes neural development. Open Biol 2019; 9:180216. [PMID: 30958121 PMCID: PMC6367132 DOI: 10.1098/rsob.180216] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
During development, both cells and tissues must acquire the correct shape to allow their proper function. This is especially relevant in the nervous system, where the shape of individual cell processes, such as the axons and dendrites, and the shape of entire tissues, such as the folding of the neocortex, are highly specialized. While many aspects of neural development have been uncovered, there are still several open questions concerning the mechanisms governing cell and tissue shape. In this review, we discuss the role of the extracellular matrix (ECM) in these processes. In particular, we consider how the ECM regulates cell shape, proliferation, differentiation and migration, and more recent work highlighting a key role of ECM in the morphogenesis of neural tissues.
Collapse
Affiliation(s)
- Katherine R. Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| |
Collapse
|
19
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
20
|
Culture of human neurospheres in 3D scaffolds for developmental neurotoxicity testing. Toxicol In Vitro 2018; 52:106-115. [PMID: 29883730 DOI: 10.1016/j.tiv.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022]
Abstract
Human neural progenitor cells cultured as neurospheres are a promising tool for developmental neurotoxicity testing in vitro. In order to obtain a human cell-based tissue culture system as close to the organ as possible, it is desirable to improve the spatial organization of the "Neurosphere Assay" and use 3D scaffolds to better mimic the in vivo three dimensional cell microenvironment. For this reason we have established the conditions for short-term culture (up to 6 days) in matrigel or in IKVAV-3 peptide-functionalized hydrogels, and for long-term culture (>25 days) in IKVAV-3 peptide-functionalized hydrogels showing that these conditions support human neural progenitor cells' migration, differentiation to neurons and formation of neuronal networks. Moreover, we assessed if neurospheres grown in 3D scaffolds allow for developmental neurotoxicity compound testing. At concentrations not affecting cell viability the known developmental neurotoxic compound MeHgCl inhibits migration of human neural progenitor cells grown in 3D scaffolds with a higher potency than when the same cells are cultured on a laminin-coated surface as secondary 3D structures. Thus, this work opens the door to functional assessment of compound effects on short- and long-term cultured human neurospheres embedded in 3D scaffolds for developmental neurotoxicity testing.
Collapse
|
21
|
Zhang Y, Xi S, Chen J, Zhou D, Gao H, Zhou Z, Xu L, Chen M. Overexpression of LAMC1 predicts poor prognosis and enhances tumor cell invasion and migration in hepatocellular carcinoma. J Cancer 2017; 8:2992-3000. [PMID: 28928891 PMCID: PMC5604451 DOI: 10.7150/jca.21038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022] Open
Abstract
LAMC1 encodes an extracellular matrix protein, laminin γ1 chain, which is involved in several biological and pathological processes including tissue development, tumor cell invasion and metastasis. In present study, we demonstrated that both LAMC1 protein and mRNA levels were elevated in HCC tissue samples compared with non-cancerous tissue samples according to western blot analyses, immunohistochemistry (IHC) and microarray. Moreover, high LAMC1 expression was positively correlated with incomplete encapsulation (p=0.014), poor overall (OS, p=0.02) and disease-free survival (DFS, p=0.014). Using cell lines, we demonstrated that the levels of LAMC1 mRNA and protein were significantly higher in HCC cell lines than that in LO2 cell line. After the expression of LAMC1 was depressed by siRNA technique, the cell proliferation, migration and invasion were depressed significantly. Taken together, these data suggest that LAMC1 is enriched in HCC; overexpression of LAMC1 predicts poor prognosis, and enhances tumor cell invasion and migration. LAMC1 might be a new biomarker predictive of HCC prognosis and might also be a useful treatment target.
Collapse
Affiliation(s)
- Yaojun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaoyan Xi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Jinbin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Dongsheng Zhou
- Department of Surgery, Qianfoshan Hospital, Shandong Province, Jinan, 250014, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Shandong University, Shandong Province, Jinan, 250000, China
| | - Zhongguo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li Xu
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Minshan Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
22
|
Xu D, Liu T, Lin L, Li S, Hang X, Sun Y. Exposure to endosulfan increases endothelial permeability by transcellular and paracellular pathways in relation to cardiovascular diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:111-119. [PMID: 28108160 DOI: 10.1016/j.envpol.2016.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Exposure to environmental pollutants results in out-of-balance of vascular homeostasis. Endothelial dysfunction leads to a disruption of the endothelial permeability characteristics, associated with cardiovascular diseases. We previously reported that endosulfan could cause endothelial dysfunction, but the role of endosulfan in permeability of endothelial cells has been unexplored. To elucidate molecular mechanism of endosulfan-induced changes in endothelial permeability, human umbilical vein endothelial cells (HUVECs) were exposed to endosulfan, followed by endothelial permeability analysis. The results showed that permeability of HUVECs was enhanced at 48 h after exposure to endosulfan in a dose-dependent manner. Immunofluorescence analysis demonstrated the disruptions of actin cytoskeleton and focal adhesion in endosulfan-exposed cells. Endosulfan activated MMP3/LAMC1/FAK signaling pathway, and downregulated ROCK and PXN in transcellular pathway. Endosulfan affected adherens junctions via E-cadherin and β-catenin, and impaired gap junctions through downregulation of Cx43 in paracellular pathway. We predicted four closely related human cardiovascular diseases in Nextbio, including shock, coronary arteriosclerosis, disorder of cardiac function and hypertensive disorder in relation to endosulfan exposure. Some genes such as ROCK2 and PXN were predicted to be key genes in these diseases. These findings suggest that endosulfan increased endothelial permeability by paracellular and transcellular pathways, implicating the potential correlation between endosulfan and cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Tong Liu
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Limei Lin
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Shuai Li
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Xiaoming Hang
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
23
|
Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci 2017; 74:1095-1115. [PMID: 27696112 PMCID: PMC11107706 DOI: 10.1007/s00018-016-2381-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Laminin, one of the most widely expressed extracellular matrix proteins, exerts many important functions in multiple organs/systems and at various developmental stages. Although its critical roles in embryonic development have been demonstrated, laminin's functions at later stages remain largely unknown, mainly due to its intrinsic complexity and lack of research tools (most laminin mutants are embryonic lethal). With the advance of genetic and molecular techniques, many new laminin mutants have been generated recently. These new mutants usually have a longer lifespan and show previously unidentified phenotypes. Not only do these studies suggest novel functions of laminin, but also they provide invaluable animal models that allow investigation of laminin's functions at late stages. Here, I first briefly introduce the nomenclature, structure, and biochemistry of laminin in general. Next, all the loss-of-function mutants/models for each laminin chain are discussed and their phenotypes compared. I hope to provide a comprehensive review on laminin functions and its loss-of-function models, which could serve as a reference for future research in this understudied field.
Collapse
Affiliation(s)
- Yao Yao
- College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
24
|
López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R, López E. Paxillin: a crossroad in pathological cell migration. J Hematol Oncol 2017; 10:50. [PMID: 28214467 PMCID: PMC5316197 DOI: 10.1186/s13045-017-0418-y] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 02/08/2023] Open
Abstract
Paxilllin is a multifunctional and multidomain focal adhesion adapter protein which serves an important scaffolding role at focal adhesions by recruiting structural and signaling molecules involved in cell movement and migration, when phosphorylated on specific Tyr and Ser residues. Upon integrin engagement with extracellular matrix, paxillin is phosphorylated at Tyr31, Tyr118, Ser188, and Ser190, activating numerous signaling cascades which promote cell migration, indicating that the regulation of adhesion dynamics is under the control of a complex display of signaling mechanisms. Among them, paxillin disassembly from focal adhesions induced by extracellular regulated kinase (ERK)-mediated phosphorylation of serines 106, 231, and 290 as well as the binding of the phosphatase PEST to paxillin have been shown to play a key role in cell migration. Paxillin also coordinates the spatiotemporal activation of signaling molecules, including Cdc42, Rac1, and RhoA GTPases, by recruiting GEFs, GAPs, and GITs to focal adhesions. As a major participant in the regulation of cell movement, paxillin plays distinct roles in specific tissues and developmental stages and is involved in immune response, epithelial morphogenesis, and embryonic development. Importantly, paxillin is also an essential player in pathological conditions including oxidative stress, inflammation, endothelial cell barrier dysfunction, and cancer development and metastasis.
Collapse
Affiliation(s)
- Ana María López-Colomé
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico.
| | - Irene Lee-Rivera
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Regina Benavides-Hidalgo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Edith López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| |
Collapse
|
25
|
Stanic K, Saldivia N, Förstera B, Torrejón M, Montecinos H, Caprile T. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development. Front Neuroanat 2016; 10:89. [PMID: 27733818 PMCID: PMC5039192 DOI: 10.3389/fnana.2016.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons.
Collapse
Affiliation(s)
- Karen Stanic
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Natalia Saldivia
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Benjamín Förstera
- Department of Physiology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Marcela Torrejón
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Hernán Montecinos
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| |
Collapse
|
26
|
Autoimmunity against laminins. Clin Immunol 2016; 170:39-52. [PMID: 27464450 DOI: 10.1016/j.clim.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Laminins are ubiquitous constituents of the basement membranes with major architectural and functional role as supported by the fact that absence or mutations of laminins lead to either lethal or severely impairing phenotypes. Besides genetic defects, laminins are involved in a wide range of human diseases including cancer, infections, and inflammatory diseases, as well as autoimmune disorders. A growing body of evidence implicates several laminin chains as autoantigens in blistering skin diseases, collagenoses, vasculitis, or post-infectious autoimmunity. The current paper reviews the existing knowledge on autoimmunity against laminins referring to both experimental and clinical data, and on therapeutic implications of anti-laminin antibodies. Further investigation of relevant laminin epitopes in pathogenic autoimmunity would facilitate the development of appropriate diagnostic tools for thorough characterization of patients' antibody specificities and should decisively contribute to designing more specific therapeutic interventions.
Collapse
|
27
|
Ouach A, Boulahjar R, Vala C, Bourg S, Bonnet P, Guguen-Guillouzo C, Ravache M, Le Guevel R, Lozach O, Lazar S, Troin Y, Meijer L, Ruchaud S, Akssira M, Guillaumet G, Routier S. Novel optimization of valmerins (tetrahydropyrido[1,2-a]isoindolones) as potent dual CDK5/GSK3 inhibitors. Eur J Med Chem 2016; 115:311-25. [DOI: 10.1016/j.ejmech.2016.02.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 11/17/2022]
|
28
|
Zhao J, Chen Y, Xu Y, Pi G. Effects of PTEN inhibition on the regulation of Tau phosphorylation in rat cortical neuronal injury after oxygen and glucose deprivation. Brain Inj 2016; 30:1150-9. [PMID: 27245882 DOI: 10.3109/02699052.2016.1161828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This report investigated the involvement of the PTEN pathway in the regulation of Tau phosphorylation using an oxygen and glucose deprivation (OGD) model with rat cortical neurons. METHODS Primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro. These were randomly divided into control, OGD, bpV+OGD, As+OGD, Se+OGD and Mock treatment groups. The neuron viability was assessed by MTT, the cell apoptosis was detected using TUNEL staining. The expression of Phospho-PTEN/PTEN, Phospho-Tau/Tau, Phospho-Akt/Akt and Phospho-GSK-3β/GSK-3β were detected by Western blotting. RESULTS OGD induced Tau phosphorylation through PTEN and glycogen synthase kinase-3β (GSK-3β) activation, together with a decrease in AKT activity. Pre-treatment with bpv, a potent PTEN inhibitor, and PTEN antisense nucleotides decreased PTEN and GSK-3β activity and caused alterations in Tau phosphorylation. Neuronal apoptosis was also reduced. CONCLUSIONS The PTEN/Akt/GSK-3β/Tau pathway is involved in the regulation of neuronal injury, providing a novel route for protecting neurons following neonatal HI.
Collapse
Affiliation(s)
- Jing Zhao
- a Department of Neonatology , Affiliated Hospital of North Sichuan Medical College , Nanchong , PR China.,b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| | - Yurong Chen
- a Department of Neonatology , Affiliated Hospital of North Sichuan Medical College , Nanchong , PR China.,b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| | - Yuxia Xu
- b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| | - Guanghuan Pi
- b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| |
Collapse
|
29
|
Bal-Price A, Lein PJ, Keil KP, Sethi S, Shafer T, Barenys M, Fritsche E, Sachana M, Meek MEB. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 2016; 59:240-255. [PMID: 27212452 DOI: 10.1016/j.neuro.2016.05.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Timothy Shafer
- Integrated Systems Toxicology Division, Office of Research and Development, U.S. Environmental Protection Agency, RTP, USA
| | - Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Magdalini Sachana
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - M E Bette Meek
- McLaughlin Centre for Risk Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
30
|
PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A 2016; 113:E2955-64. [PMID: 27170189 DOI: 10.1073/pnas.1516321113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons migrate a long radial distance by a process known as locomotion in the developing mammalian neocortex. During locomotion, immature neurons undergo saltatory movement along radial glia fibers. The molecular mechanisms that regulate the speed of locomotion are largely unknown. We now show that the serine/threonine kinase Akt and its activator phosphoinositide-dependent protein kinase 1 (PDK1) regulate the speed of locomotion of mouse neocortical neurons through the cortical plate. Inactivation of the PDK1-Akt pathway impaired the coordinated movement of the nucleus and centrosome, a microtubule-dependent process, during neuronal migration. Moreover, the PDK1-Akt pathway was found to control microtubules, likely by regulating the binding of accessory proteins including the dynactin subunit p150(glued) Consistent with this notion, we found that PDK1 regulates the expression of cytoplasmic dynein intermediate chain and light intermediate chain at a posttranscriptional level in the developing neocortex. Our results thus reveal an essential role for the PDK1-Akt pathway in the regulation of a key step of neuronal migration.
Collapse
|
31
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
32
|
Barenys M, Gassmann K, Baksmeier C, Heinz S, Reverte I, Schmuck M, Temme T, Bendt F, Zschauer TC, Rockel TD, Unfried K, Wätjen W, Sundaram SM, Heuer H, Colomina MT, Fritsche E. Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol 2016; 91:827-837. [PMID: 27116294 DOI: 10.1007/s00204-016-1709-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 01/18/2023]
Abstract
Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.
Collapse
Affiliation(s)
- Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Kathrin Gassmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Christine Baksmeier
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Sabrina Heinz
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Ingrid Reverte
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Temme
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Tim-Christian Zschauer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Dino Rockel
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Sivaraj Mohana Sundaram
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Heike Heuer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Maria Teresa Colomina
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
33
|
Boulahjar R, Ouach A, Bourg S, Bonnet P, Lozach O, Meijer L, Guguen-Guillouzo C, Le Guevel R, Lazar S, Akssira M, Troin Y, Guillaumet G, Routier S. Advances in tetrahydropyrido[1,2-a]isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors. Eur J Med Chem 2015; 101:274-87. [PMID: 26142492 DOI: 10.1016/j.ejmech.2015.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An efficient synthetic strategy was developed to modulate the structure of the tetrahydropyridine isoindolone (Valmerin) skeleton. A library of more than 30 novel final structures was generated. Biological activities on CDK5 and GSK3 as well as cellular effects on cancer cell lines were measured for each novel compound. Additionally docking studies were performed to support medicinal chemistry efforts. A strong GSK3/CDK5 dual inhibitor (38, IC50 GSK3/CDK5 32/84 nM) was obtained. A set of highly selective GSK3 inhibitors was synthesized by fine-tuning structural modifications (29 IC50 GSK3/CDK5 32/320 nM). Antiproliferative effects on cells were correlated with the in vitro kinase activities and the best effects were obtained with lung and colon cell lines.
Collapse
Affiliation(s)
- Rajâa Boulahjar
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Aziz Ouach
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Stéphane Bourg
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Pascal Bonnet
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Olivier Lozach
- C.N.R.S., 'Protein Phosphorylation & Human Disease' Group, USR3151, Station Biologique, BP 74, 29682 Roscoff Cedex, France
| | - Laurent Meijer
- C.N.R.S., 'Protein Phosphorylation & Human Disease' Group, USR3151, Station Biologique, BP 74, 29682 Roscoff Cedex, France
| | - Christiane Guguen-Guillouzo
- Plateforme ImPACcell-SFR BIOSIT UMS-CNRS3480 UMS-INSERM018, Université de Rennes1, 35043 Rennes Cedex, France
| | - Rémy Le Guevel
- Plateforme ImPACcell-SFR BIOSIT UMS-CNRS3480 UMS-INSERM018, Université de Rennes1, 35043 Rennes Cedex, France
| | - Saïd Lazar
- Laboratoire de Chimie, Bioorganique et Analytique, URAC 22 pôle Répam, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
| | - Mohamed Akssira
- Laboratoire de Chimie, Bioorganique et Analytique, URAC 22 pôle Répam, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
| | - Yves Troin
- Clermont Université, ENSCCF, Laboratoire de Chimie des Hétérocycles et des Glucides, BP 10448, 63000 Clermont-Ferrand, France
| | - Gérald Guillaumet
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| | - Sylvain Routier
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
34
|
Pasqualini L, Bu H, Puhr M, Narisu N, Rainer J, Schlick B, Schäfer G, Angelova M, Trajanoski Z, Börno ST, Schweiger MR, Fuchsberger C, Klocker H. miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer. Mol Endocrinol 2015; 29:1037-54. [PMID: 26052614 DOI: 10.1210/me.2014-1358] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.
Collapse
Affiliation(s)
- Lorenza Pasqualini
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Huajie Bu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Martin Puhr
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Narisu Narisu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Johannes Rainer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Bettina Schlick
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Georg Schäfer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Mihaela Angelova
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Zlatko Trajanoski
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan T Börno
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michal R Schweiger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Christian Fuchsberger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Helmut Klocker
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
35
|
Ajioka I, Jinnou H, Okada K, Sawada M, Saitoh S, Sawamoto K. Enhancement of Neuroblast Migration into the Injured Cerebral Cortex Using Laminin-Containing Porous Sponge. Tissue Eng Part A 2015; 21:193-201. [DOI: 10.1089/ten.tea.2014.0080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideo Jinnou
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kei Okada
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
36
|
Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci 2014; 34:9867-79. [PMID: 25057190 DOI: 10.1523/jneurosci.1162-14.2014] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fmr1 knock-out (ko) mice display key features of fragile X syndrome (FXS), including delayed dendritic spine maturation and FXS-associated behaviors, such as poor socialization, obsessive-compulsive behavior, and hyperactivity. Here we provide conclusive evidence that matrix metalloproteinase-9 (MMP-9) is necessary to the development of FXS-associated defects in Fmr1 ko mice. Genetic disruption of Mmp-9 rescued key aspects of Fmr1 deficiency, including dendritic spine abnormalities, abnormal mGluR5-dependent LTD, as well as aberrant behaviors in open field and social novelty tests. Remarkably, MMP-9 deficiency also corrected non-neural features of Fmr1 deficiency-specifically macroorchidism-indicating that MMP-9 dysregulation contributes to FXS-associated abnormalities outside the CNS. Further, MMP-9 deficiency suppressed elevations of Akt, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E phosphorylation seen in Fmr1 ko mice, which are also associated with other autistic spectrum disorders. These findings establish that MMP-9 is critical to the mechanisms responsible for neural and non-neural aspects of the FXS phenotype.
Collapse
|
37
|
SCO-spondin derived peptide NX210 induces neuroprotection in vitro and promotes fiber regrowth and functional recovery after spinal cord injury. PLoS One 2014; 9:e93179. [PMID: 24667843 PMCID: PMC3965545 DOI: 10.1371/journal.pone.0093179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/03/2014] [Indexed: 11/19/2022] Open
Abstract
In mammals, the limited regenerating potential of the central nervous system (CNS) in adults contrasts with the plasticity of the embryonic and perinatal periods. SCO (subcommissural organ)-spondin is a protein secreted early by the developing central nervous system, potentially involved in the development of commissural fibers. SCO-spondin stimulates neuronal differentiation and neurite growth in vitro. NX210 oligopeptide was designed from SCO-spondin's specific thrombospondin type 1 repeat (TSR) sequences that support the main neurogenic properties of the molecule. The objective of this work was to assess the neuroprotective and neuroregenerative properties of NX210 in vitro and in vivo for the treatment of spinal cord injury (SCI). In vitro studies were carried out on the B104 neuroblastoma cell line demonstrating neuroprotection by the resistance to oxidative damage using hydrogen peroxide and the measure of cell viability by metabolic activity. In vivo studies were performed in two rat models of SCI: (1) a model of aspiration of dorsal funiculi followed by the insertion of a collagen tube in situ to limit collateral sprouting; white matter regeneration was assessed using neurofilament immunostaining; (2) a rat spinal cord contusion model to assess functional recovery using BBB scale and reflex testing. We demonstrate for the first time that NX210 (a) provides neuroprotection to oxidative stress in the B104 neuroblastoma cells, (b) stimulates axonal regrowth in longitudinally oriented neofibers in the aspiration model of SCI and (c) significantly improves functional recovery in the contusive model of SCI.
Collapse
|
38
|
Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun 2014; 5:3413. [PMID: 24583950 PMCID: PMC3992931 DOI: 10.1038/ncomms4413] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Blood brain barrier (BBB) breakdown is not only a consequence of but also contributes to many neurological disorders, including stroke and Alzheimer's disease. How the basement membrane (BM) contributes to the normal functioning of the BBB remains elusive. Here we use conditional knockout mice and an acute adenovirus-mediated knockdown model to show that lack of astrocytic laminin, a brain-specific BM component, induces BBB breakdown. Using functional blocking antibody and RNAi, we further demonstrate that astrocytic laminin, by binding to integrin α2 receptor, prevents pericyte differentiation from the BBB-stabilizing resting stage to the BBB-disrupting contractile stage, and thus maintains the integrity of BBB. Additionally, loss of astrocytic laminin decreases aquaporin-4 (AQP4) and tight junction protein expression. Altogether, we report a critical role for astrocytic laminin in BBB regulation and pericyte differentiation. These results indicate that astrocytic laminin maintains the integrity of BBB through, at least in part, regulation of pericyte differentiation.
Collapse
|
39
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
40
|
Abstract
Proper lamination of the cerebral cortex is precisely orchestrated, especially when neurons migrate from their place of birth to their final destination. The consequences of failure or delay in neuronal migration cause a wide range of disorders, such as lissencephaly, schizophrenia, autism and mental retardation. Neuronal migration is a dynamic process, which requires dynamic remodeling of the cytoskeleton. In this context microtubules and microtubule-related proteins have been suggested to play important roles in the regulation of neuronal migration. Here, we will review the dynamic aspects of neuronal migration and brain development, describe the molecular and cellular mechanisms of neuronal migration and elaborate on neuronal migration diseases.
Collapse
|
41
|
Hochman-Mendez C, Lacerda de Menezes JR, Sholl-Franco A, Coelho-Sampaio T. Polylaminin recognition by retinal cells. J Neurosci Res 2013; 92:24-34. [PMID: 24265135 DOI: 10.1002/jnr.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 11/05/2022]
Abstract
Polylaminin (polyLM) is a flat biomimetic polymer of laminin capable of promoting axonal growth both in vitro and in vivo. It is assembled in a cell-free system when laminin 111 is incubated in acidic pH, whereas incubation in neutral buffer leads to the formation of bulky and irregular polymers (LM). In the present work, we compared the behaviors of cells isolated from the P1 rat retina on polyLM and LM. PolyLM induced cellular spreading and the outgrowth of neurites in contact with the substrate, whereas LM led to the formation of large clusters of cells, with neurites growing only inward. After 24 hr in culture, the number of cells on polyLM increased threefold, and this increase was inhibited by 60% in the presence of the PKA inhibitor H89 and by 41% in the presence of the PKC inhibitor chelerythrine chloride, whereas both inhibitors abolished neuritogenesis. Neither the cell number nor the outgrowth of neurites was affected by the ERK1/2 inhibitor PD98059 on polyLM. On the other hand, PD98059 was able to reduce the cell number on LM, whereas the other inhibitors were not. Immunostaining of P1 retina with an antilaminin antibody revealed that the protein was expressed not only at its inner surface but also within the neuroblast layer in close contact with individual cells. Our results indicate that, when provided in its active polymerized form, laminin can influence both neuritogenesis and proliferation of retinal cells.
Collapse
Affiliation(s)
- Camila Hochman-Mendez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
42
|
Radmanesh F, Caglayan A, Silhavy J, Yilmaz C, Cantagrel V, Omar T, Rosti B, Kaymakcalan H, Gabriel S, Li M, Šestan N, Bilguvar K, Dobyns W, Zaki M, Gunel M, Gleeson J. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet 2013; 92:468-74. [PMID: 23472759 DOI: 10.1016/j.ajhg.2013.02.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/05/2012] [Accepted: 02/08/2013] [Indexed: 02/02/2023] Open
Abstract
Cobblestone brain malformation (COB) is a neuronal migration disorder characterized by protrusions of neurons beyond the first cortical layer at the pial surface of the brain. It is usually seen in association with dystroglycanopathy types of congenital muscular dystrophies (CMDs) and ocular abnormalities termed muscle-eye-brain disease. Here we report homozygous deleterious mutations in LAMB1, encoding laminin subunit beta-1, in two families with autosomal-recessive COB. Affected individuals displayed a constellation of brain malformations including cortical gyral and white-matter signal abnormalities, severe cerebellar dysplasia, brainstem hypoplasia, and occipital encephalocele, but they had less apparent ocular or muscular abnormalities than are typically observed in COB. LAMB1 is localized to the pial basement membrane, suggesting that defective connection between radial glial cells and the pial surface mediated by LAMB1 leads to this malformation.
Collapse
|
43
|
Santos TG, Beraldo FH, Hajj GNM, Lopes MH, Roffe M, Lupinacci FCS, Ostapchenko VG, Prado VF, Prado MAM, Martins VR. Laminin-γ1 chain and stress inducible protein 1 synergistically mediate PrPC-dependent axonal growth via Ca2+ mobilization in dorsal root ganglia neurons. J Neurochem 2012; 124:210-23. [PMID: 23145988 DOI: 10.1111/jnc.12091] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/01/2022]
Abstract
Prion protein (PrP(C)) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrP(C) interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrP(C) co-opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross-talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrP(C)-mediated axonogenesis in peripheral neurons in response to STI1 and laminin-γ1 chain-derived peptide (Ln-γ1). STI1 and Ln-γ1 promoted robust axonogenesis in wild-type neurons, whereas no effect was observed in neurons from PrP(C) -null mice. PrP(C) binding to Ln-γ1 or STI1 led to an increase in intracellular Ca(2+) levels via distinct mechanisms: STI1 promoted extracellular Ca(2+) influx, and Ln-γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln-γ1, but depends on, C-type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrP(C)-mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrP(C). These results suggest a role for PrP(C) as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.
Collapse
Affiliation(s)
- Tiago G Santos
- International Research Center, A.C. Camargo Hospital, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Santos ARC, Corredor RG, Obeso BA, Trakhtenberg EF, Wang Y, Ponmattam J, Dvoriantchikova G, Ivanov D, Shestopalov VI, Goldberg JL, Fini ME, Bajenaru ML. β1 integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival. PLoS One 2012; 7:e48332. [PMID: 23118988 PMCID: PMC3485184 DOI: 10.1371/journal.pone.0048332] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM) integrity in the central nervous system (CNS) is essential for neuronal homeostasis. Signals from the ECM are transmitted to neurons through integrins, a family of cell surface receptors that mediate cell attachment to ECM. We have previously established a causal link between the activation of the matrix metalloproteinase-9 (MMP-9), degradation of laminin in the ECM of retinal ganglion cells (RGCs), and RGC death in a mouse model of retinal ischemia-reperfusion injury (RIRI). Here we investigated the role of laminin-integrin signaling in RGC survival in vitro, and after ischemia in vivo. In purified primary rat RGCs, stimulation of the β1 integrin receptor with laminin, or agonist antibodies enhanced RGC survival in correlation with activation of β1 integrin’s major downstream regulator, focal adhesion kinase (FAK). Furthermore, β1 integrin binding and FAK activation were required for RGCs’ survival response to laminin. Finally, in vivo after RIRI, we observed an up-regulation of MMP-9, proteolytic degradation of laminin, decreased RGC expression of β1 integrin, FAK and Akt dephosphorylation, and reduced expression of the pro-survival molecule bcl-xL in the period preceding RGC apoptosis. RGC death was prevented, in the context of laminin degradation, by maintaining β1 integrin activation with agonist antibodies. Thus, disruption of homeostatic RGC-laminin interaction and signaling leads to cell death after retinal ischemia, and maintaining integrin activation may be a therapeutic approach to neuroprotection.
Collapse
Affiliation(s)
- Andrea Rachelle C. Santos
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Raul G. Corredor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Betty Albo Obeso
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ephraim F. Trakhtenberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ying Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jamie Ponmattam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jeffrey L. Goldberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mary Elizabeth Fini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Michaela Livia Bajenaru
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
45
|
Franco SJ, Müller U. Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Dev Neurobiol 2012; 71:889-900. [PMID: 21739613 DOI: 10.1002/dneu.20946] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extracellular matrix (ECM) glycoproteins are expressed in the central nervous system (CNS) in complex and developmentally regulated patterns. The ECM provides a number of critical functions in the CNS, contributing both to the overall structural organization of the CNS and to control of individual cells. At the cellular level, the ECM affects its functions by a wide range of mechanisms, including providing structural support to cells, regulating the activity of second messenger systems, and controlling the distribution and local concentration of growth and differentiation factors. Perhaps the most well known role of the ECM is as a substrate on which motile cells can migrate. Genetic, cell biological, and biochemical studies provide strong evidence that ECM glycoproteins such as laminins, tenascins, and proteoglycans control neuronal migration and positioning in several regions of the developing and adult brain. Recent findings have also shed important new insights into the cellular and molecular mechanisms by which reelin regulates migration. Here we will summarize these findings, emphasizing the emerging concept that ECM glycoproteins promote different modes of neuronal migration such as radial, tangential, and chain migration. We also discuss several studies demonstrating that mutations in ECM glycoproteins can alter neuronal positioning by cell nonautonomous mechanisms that secondarily affect migrating neurons.
Collapse
Affiliation(s)
- Santos J Franco
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
46
|
Abstract
Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine kinase. It is particularly abundant in the developing central nervous system (CNS). Since GSK3β has diverse substrates ranging from metabolic/signaling proteins and structural proteins to transcription factors, it is involved in many developmental events in the immature brain, such as neurogenesis, neuronal migration, differentiation and survival. The activity of GSK3β is developmentally regulated and is affected by various environmental/cellular insults, such as deprivation of nutrients/trophic factors, oxidative stress and endoplasmic reticulum stress. Abnormalities in GSK3β activity may disrupt CNS development. Therefore, GSK3β is a critical signaling protein that regulates brain development. It may also determine neuronal susceptibility to damages caused by various environmental insults.
Collapse
|
47
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
48
|
Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, Ardila-Osorio H, Mouillet-Richard S, Launay JM, Kellermann O, Schneider B. Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J 2011; 26:678-90. [PMID: 22038049 DOI: 10.1096/fj.11-185579] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytoskeleton modifications are required for neuronal stem cells to acquire neuronal polarization. Little is known, however, about mechanisms that orchestrate cytoskeleton remodeling along neuritogenesis. Here, we show that the silencing of the cellular prion protein (PrP(C)) impairs the initial sprouting of neurites upon induction of differentiation of the 1C11 neuroectodermal cell line, indicating that PrP(C) is necessary to neuritogenesis. Such PrP(C) function relies on its capacity to negatively regulate the clustering, activation, and signaling activity of β1 integrins at the plasma membrane. β1 Integrin aggregation caused by PrP(C) depletion triggers overactivation of the RhoA-Rho kinase-LIMK-cofilin pathway, which, in turn, alters the turnover of focal adhesions, increases the stability of actin microfilaments, and in fine impairs neurite formation. Inhibition of Rho kinases is sufficient to compensate for the lack of PrP(C) and to restore neurite sprouting. We also observe an increased secretion of fibronectin in the surrounding milieu of PrP(C)-depleted 1C11 cells, which likely self-sustains β1 integrin signaling overactivation and contributes to neuritogenesis defect. Our overall data reveal that PrP(C) contributes to the acquisition of neuronal polarization by modulating β1 integrin activity, cell interaction with fibronectin, and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Damien Loubet
- Institut National Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S) 747, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu X, Warrington AE, Wright BR, Bieber AJ, Van Keulen V, Pease LR, Rodriguez M. A human IgM signals axon outgrowth: coupling lipid raft to microtubules. J Neurochem 2011; 119:100-12. [PMID: 21824142 DOI: 10.1111/j.1471-4159.2011.07416.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mouse and human IgMs support neurite extension from primary cerebellar granule neurons. In this study using primary hippocampal and cortical neurons, we demonstrate that a recombinant human IgM, rHIgM12, promotes axon outgrowth by coupling membrane domains (lipid rafts) to microtubules. rHIgM12 binds to the surface of neuron and induces clustering of cholesterol and ganglioside GM1. After cell binding and membrane fractionation, rHIgM12 gets segregated into two pools, one associated with lipid raft fractions and the other with the detergent-insoluble cytoskeleton-containing pellet. Membrane-bound rHIgM12 co-localized with microtubules and co-immuno precipitated with β3-tubulin. rHIgM12-membrane interaction also enhanced the tyrosination of α-tubulin indicating a stabilization of new neurites. When presented as a substrate, rHIgM12 induced axon outgrowth from primary neurons. We now demonstrate that a recombinant human mAb can induce signals in neurons that regulate membrane lipids and microtubule dynamics required for axon extension. We propose that the pentameric structure of the IgM is critical to cross-link membrane lipids and proteins resulting in signaling cascades.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Randlett O, Poggi L, Zolessi FR, Harris WA. The oriented emergence of axons from retinal ganglion cells is directed by laminin contact in vivo. Neuron 2011; 70:266-80. [PMID: 21521613 PMCID: PMC3087191 DOI: 10.1016/j.neuron.2011.03.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2011] [Indexed: 11/29/2022]
Abstract
How the site of axon emergence is specified during neural development is not understood. Previous studies disagree on the relative importance of intrinsic and extrinsic mechanisms. The axons of retinal ganglion cells (RGCs) emerge basally in vivo, yet because RGCs develop from polarized neuroepithelial cells within a polarized environment, disentangling intrinsic and extrinsic influences is a challenge. We use time-lapse imaging to demonstrate that Laminin acting directly on RGCs is necessary and sufficient to orient axon emergence in vivo. Laminin contact with the basal processes of newborn RGCs prevents the cells from entering a stochastic Stage 2 phase, directs the rapid accumulation of the early axonal marker Kif5c560-YFP, and leads to the formation of axonal growth cones. These results suggest that contact-mediated cues may be critical for the site of axon emergence and account for the differences in cellular behavior observed in vitro and in vivo.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | |
Collapse
|