1
|
Duan R, Hu B, Ding E, Zhang S, Wu M, Jin Y, Ali U, Saeed MAR, Raza B, Usama M, Batool SS, Cai Q, Ji S. Cul2 Is Essential for the Drosophila IMD Signaling-Mediated Antimicrobial Immune Defense. Int J Mol Sci 2025; 26:2627. [PMID: 40141268 PMCID: PMC11941880 DOI: 10.3390/ijms26062627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Cullin 2 (Cul2), a core component of the Cullin-RING E3 ubiquitin ligase complex, is integral to regulating distinct biological processes. However, its role in innate immune defenses remains poorly understood. In this study, we investigated the functional significance of Cul2 in the immune deficiency (IMD) signaling-mediated antimicrobial immune reactions in Drosophila melanogaster (fruit fly). We demonstrated that loss-of-function of Cul2 led to a marked reduction in antimicrobial peptide induction following bacterial infection, which was associated with increased fly mortality and bacterial load. The proteomic analysis further revealed that loss-of-function of Cul2 reduced the expression of Effete (Eff), a key E2 ubiquitin-conjugating enzyme during IMD signaling. Intriguingly, ectopic expression of eff effectively rescued the immune defects caused by loss of Cul2. Taken together, the results of our study underscore the critical role of Cul2 in ensuring robust IMD signaling activation, highlighting its importance in the innate immune defense against microbial infection in Drosophila.
Collapse
Affiliation(s)
- Renjie Duan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Baoyi Hu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Erwen Ding
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Shikun Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Mingfei Wu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Yiheng Jin
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Umar Ali
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Muhammad Abdul Rehman Saeed
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Badar Raza
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Muhammad Usama
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Syeda Samia Batool
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| | - Qingshuang Cai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France;
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (B.H.); (E.D.); (S.Z.); (M.W.); (Y.J.); (U.A.); (M.A.R.S.); (B.R.); (M.U.); (S.S.B.)
| |
Collapse
|
2
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. eLife 2024; 12:RP91988. [PMID: 39564985 PMCID: PMC11578588 DOI: 10.7554/elife.91988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA-binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronxUnited States
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
3
|
Nair S, Baker NE. Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560841. [PMID: 39131389 PMCID: PMC11312471 DOI: 10.1101/2023.10.04.560841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of and Physiology, NYU School of Medicine, 435 East 30 St, New York, NY
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Present address: Department of Microbiology and Molecular Genetics, University of California, Irvine, 2011 Biological Sciences 3, Irvine, CA 92697-2300
| |
Collapse
|
4
|
Yeung K, Bollepogu Raja KK, Shim YK, Li Y, Chen R, Mardon G. Single cell RNA sequencing of the adult Drosophila eye reveals distinct clusters and novel marker genes for all major cell types. Commun Biol 2022; 5:1370. [PMID: 36517671 PMCID: PMC9751288 DOI: 10.1038/s42003-022-04337-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
The adult Drosophila eye is a powerful model system for phototransduction and neurodegeneration research. However, single cell resolution transcriptomic data are lacking for this tissue. We present single cell RNA-seq data on 1-day male and female, 3-day and 7-day old male adult eyes, covering early to mature adult eyes. All major cell types, including photoreceptors, cone and pigment cells in the adult eye were captured and identified. Our data sets identified novel cell type specific marker genes, some of which were validated in vivo. R7 and R8 photoreceptors form clusters that reflect their specific Rhodopsin expression and the specific Rhodopsin expression by each R7 and R8 cluster is the major determinant to their clustering. The transcriptomic data presented in this report will facilitate a deeper mechanistic understanding of the adult fly eye as a model system.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Structural and Computation Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Structural and Computation Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Abstract
Notch signalling is a well-conserved signalling pathway that regulates cell fate through cell-cell communication. A typical feature of Notch signalling is ‘lateral inhibition’, whereby two neighbouring cells of equivalent state of differentiation acquire different cell fates. Recently, mathematical and computational approaches have addressed the Notch dynamics in Drosophila neural development. Typical examples of lateral inhibition are observed in the specification of neural stem cells in the embryo and sensory organ precursors in the thorax. In eye disc development, Notch signalling cooperates with other signalling pathways to define the evenly spaced positioning of the photoreceptor cells. The interplay between Notch and epidermal growth factor receptor signalling regulates the timing of neural stem cell differentiation in the optic lobe. In this review, we summarize the theoretical studies that have been conducted to elucidate the Notch dynamics in these systems and discuss the advantages of combining mathematical models with biological experiments.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Interplay between sex determination cascade and major signaling pathways during Drosophila eye development: Perspectives for future research. Dev Biol 2021; 476:41-52. [PMID: 33745943 DOI: 10.1016/j.ydbio.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Understanding molecular mechanisms of sexually dimorphic organ growth is a fundamental problem of developmental biology. Recent quantitative studies showed that the Drosophila compound eye is a convenient model to study the determination of the final organ size. In Drosophila, females have larger eyes than males and this is evident even after correction for the larger body size. Moreover, female eyes include more ommatidia (photosensitive units) than male eyes and this difference is specified at the third larval instar in the eye primordia called eye imaginal discs. This may result in different visual capabilities between the two sexes and have behavioral consequences. Despite growing evidence on the genetic bases of eye size variation between different Drosophila species and strains, mechanisms responsible for within-species sexual dimorphism still remain elusive. Here, we discuss a presumptive crosstalk between the sex determination cascade and major signaling pathways during dimorphic eye development. Male- and female-specific isoforms of Doublesex (Dsx) protein are known to control sex-specific differentiation in the somatic tissues. However, no data on Dsx function during eye disc growth and patterning are currently available. Remarkably, Sex lethal (Sxl), the sex determination switch protein, was shown to directly affect Hedgehog (Hh) and Notch (N) signaling in the Drosophila wing disc. The similarity of signaling pathways involved in the wing and eye disc growth suggests that Sxl might be integrated into regulation of eye development. Dsx role in the eye disc requires further investigation. We discuss currently available data on sex-biased gene expression in the Drosophila eye and highlight perspectives for future studies.
Collapse
|
7
|
Quiquand M, Rimesso G, Qiao N, Suo S, Zhao C, Slattery M, White KP, Han JJ, Baker NE. New regulators of Drosophila eye development identified from temporal transcriptome changes. Genetics 2021; 217:6117222. [PMID: 33681970 DOI: 10.1093/genetics/iyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/28/2020] [Indexed: 11/12/2022] Open
Abstract
In the last larval instar, uncommitted progenitor cells in the Drosophila eye primordium start to adopt individual retinal cell fates, arrest their growth and proliferation, and initiate terminal differentiation into photoreceptor neurons and other retinal cell types. To explore the regulation of these processes, we have performed mRNA-Seq studies of the larval eye and antennal primordial at multiple developmental stages. A total of 10,893 fly genes were expressed during these stages and could be adaptively clustered into gene groups, some of whose expression increases or decreases in parallel with the cessation of proliferation and onset of differentiation. Using in situ hybridization of a sample of 98 genes to verify spatial and temporal expression patterns, we estimate that 534 genes or more are transcriptionally upregulated during retinal differentiation, and 1367 or more downregulated as progenitor cells differentiate. Each group of co-expressed genes is enriched for regulatory motifs recognized by co-expressed transcription factors, suggesting that they represent coherent transcriptional regulatory programs. Using available mutant strains, we describe novel roles for the transcription factors SoxNeuro (SoxN), H6-like homeobox (Hmx), CG10253, without children (woc), Structure specific recognition protein (Ssrp), and multisex combs (mxc).
Collapse
Affiliation(s)
- Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nan Qiao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengbao Suo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunyu Zhao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Matthew Slattery
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jackie J Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Abstract
Molecules of the hedgehog (hh) family are involved in the specification and patterning of eyes in vertebrates and invertebrates. These organs, though, are of very different sizes, raising the question of how Hh molecules operate at such different scales. In this paper we discuss the strategies used by Hh to control the development of the two eye types in Drosophila: the large compound eye and the small ocellus. We first describe the distinct ways in which these two eyes develop and the evidence for the key role played by Hh in both; then we consider the potential for variation in the range of action of a "typical" morphogen and measure this range ("characteristic length") for Hh in different organs, including the compound eye and the ocellus. Finally, we describe how different feedback mechanisms are used to extend the Hh range of action to pattern the large and even the small eye. In the ocellus, the basic Hh signaling pathway adds to its dynamics the attenuation of its receptor as cell differentiate. This sole regulatory change can result in the decoding of the Hh gradient by receiving cells as a wave of constant speed. Therefore, in the fly ocellus, the Hh morphogen adds to its spatial patterning role a novel one: patterning along a time axis.
Collapse
|
9
|
Baker NE, Brown NL. All in the family: proneural bHLH genes and neuronal diversity. Development 2018; 145:145/9/dev159426. [PMID: 29720483 DOI: 10.1242/dev.159426] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proneural basic Helix-Loop-Helix (bHLH) proteins are required for neuronal determination and the differentiation of most neural precursor cells. These transcription factors are expressed in vastly divergent organisms, ranging from sponges to primates. Here, we review proneural bHLH gene evolution and function in the Drosophila and vertebrate nervous systems, arguing that the Drosophila gene atonal provides a useful platform for understanding proneural gene structure and regulation. We also discuss how functional equivalency experiments using distinct proneural genes can reveal how proneural gene duplication and divergence are interwoven with neuronal complexity.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
10
|
Singh R, Lauth M. Emerging Roles of DYRK Kinases in Embryogenesis and Hedgehog Pathway Control. J Dev Biol 2017; 5:E13. [PMID: 29615569 PMCID: PMC5831797 DOI: 10.3390/jdb5040013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh)/GLI signaling is an important instructive cue in various processes during embryonic development, such as tissue patterning, stem cell maintenance, and cell differentiation. It also plays crucial roles in the development of many pediatric and adult malignancies. Understanding the molecular mechanisms of pathway regulation is therefore of high interest. Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) comprise a group of protein kinases which are emerging modulators of signal transduction, cell proliferation, survival, and cell differentiation. Work from the last years has identified a close regulatory connection between DYRKs and the Hh signaling system. In this manuscript, we outline the mechanistic influence of DYRK kinases on Hh signaling with a focus on the mammalian situation. We furthermore aim to bring together what is known about the functional consequences of a DYRK-Hh cross-talk and how this might affect cellular processes in development, physiology, and pathology.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
11
|
Majot AT, Bidwai AP. Analysis of transient hypermorphic activity of E(spl)D during R8 specification. PLoS One 2017; 12:e0186439. [PMID: 29036187 PMCID: PMC5643056 DOI: 10.1371/journal.pone.0186439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022] Open
Abstract
Drosophila atonal (ato) is required for the specification of founding R8 photoreceptors during retinal development. ato is regulated via dual eye-specific enhancers; ato-3’ is subject to initial induction whereas 5’-ato facilitates Notch-mediated autoregulation. Notch is further utilized to induce bHLH repressors of the E(spl) locus to restrict Ato from its initial broad expression to individual cells. Although Notch operates in two, distinct phases, it has remained unclear how the two phases maintain independence from one another. The difference in these two phases has attributed to the hypothesized delayed expression of E(spl). However, immunofluorescence data indicate that E(spl) are expressed during early Ato patterning, suggesting a more sophisticated underlying mechanism. To probe this mechanism, we provide evidence that although E(spl) exert no influence on ato-3’, E(spl) repress 5’-ato and deletion of the E(spl) locus elicits precocious 5’-ato activity. Thus, E(spl) imposes a delay to the timing in which Ato initiates autoregulation. We next sought to understand this finding in the context of E(spl)D, which encodes a dysregulated variant of E(spl)M8 that perturbs R8 patterning, though, as previously reported, only in conjunction with the mutant receptor Nspl. We established a genetic interaction between E(spl)D and roughened eye (roe), a known modulator of Notch signaling in retinogenesis. This link further suggests a dosage-dependence between E(spl) and the proneural activators Ato and Sens, as indicated via interaction assays in which E(spl)D renders aberrant R8 patterning in conjunction with reduced proneural dosage. In total, the biphasicity of Notch signaling relies, to some degree, on the post-translational regulation of individual E(spl) members and, importantly, that post-translational regulation is likely necessary to modulate the level of E(spl) activity throughout the progression of Ato expression.
Collapse
Affiliation(s)
- Adam T. Majot
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Ashok P. Bidwai
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis. PLoS Genet 2016; 12:e1006204. [PMID: 27442438 PMCID: PMC4956209 DOI: 10.1371/journal.pgen.1006204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. Molecules of the Hedgehog (Hh) family are involved in the control of many developmental processes in both vertebrates and invertebrates. One of these processes is the formation of the retina in the fruitfly Drosophila. Here, Hh orchestrates a differentiation wave that allows the fast and precise differentiation of the fly retina, by controlling cell cycle, fate and morphogenesis. In this work we identify the gene dachshund (dac) as necessary to potentiate Hh signaling. In its absence, all Hh-dependent processes are delayed and retinal differentiation is severely impaired. Using genetic analysis, we find that dac, a nuclear factor that can bind DNA, is required for the stabilization of the nuclear transducer of the Hh signal, the Gli transcription factor Ci. dac expression is activated by Hh signaling and therefore is a key element in a positive feedback loop within the Hh signaling pathway that ensures a fast and robust differentiation of the retina. The vertebrate dac homologues, the DACH1 and 2 genes, are also important developmental regulators and cancer genes and a potential link between DACH genes and the Hh pathway in vertebrates awaits investigation.
Collapse
|
13
|
Moncrieff S, Moncan M, Scialpi F, Ditzel M. Regulation of hedgehog Ligand Expression by the N-End Rule Ubiquitin-Protein Ligase Hyperplastic Discs and the Drosophila GSK3β Homologue, Shaggy. PLoS One 2015; 10:e0136760. [PMID: 26334301 PMCID: PMC4559392 DOI: 10.1371/journal.pone.0136760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (Hh) morphogen signalling plays an essential role in tissue development and homeostasis. While much is known about the Hh signal transduction pathway, far less is known about the molecules that regulate the expression of the hedgehog (hh) ligand itself. Here we reveal that Shaggy (Sgg), the Drosophila melanogaster orthologue of GSK3β, and the N-end Rule Ubiquitin-protein ligase Hyperplastic Discs (Hyd) act together to co-ordinate Hedgehog signalling through regulating hh ligand expression and Cubitus interruptus (Ci) expression. Increased hh and Ci expression within hyd mutant clones was effectively suppressed by sgg RNAi, placing sgg downstream of hyd. Functionally, sgg RNAi also rescued the adult hyd mutant head phenotype. Consistent with the genetic interactions, we found Hyd to physically interact with Sgg and Ci. Taken together we propose that Hyd and Sgg function to co-ordinate hh ligand and Ci expression, which in turn influences important developmental signalling pathways during imaginal disc development. These findings are important as tight temporal/spatial regulation of hh ligand expression underlies its important roles in animal development and tissue homeostasis. When deregulated, hh ligand family misexpression underlies numerous human diseases (e.g., colorectal, lung, pancreatic and haematological cancers) and developmental defects (e.g., cyclopia and polydactyly). In summary, our Drosophila-based findings highlight an apical role for Hyd and Sgg in initiating Hedgehog signalling, which could also be evolutionarily conserved in mammals.
Collapse
Affiliation(s)
- Sophie Moncrieff
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Matthieu Moncan
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Flavia Scialpi
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Mark Ditzel
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh CRUK Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Drosophila eyes absent is required for normal cone and pigment cell development. PLoS One 2014; 9:e102143. [PMID: 25057928 PMCID: PMC4109927 DOI: 10.1371/journal.pone.0102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/14/2014] [Indexed: 11/19/2022] Open
Abstract
In Drosophila, development of the compound eye is orchestrated by a network of highly conserved transcriptional regulators known as the retinal determination (RD) network. The retinal determination gene eyes absent (eya) is expressed in most cells within the developing eye field, from undifferentiated retinal progenitors to photoreceptor cells whose differentiation begins at the morphogenetic furrow (MF). Loss of eya expression leads to an early block in retinal development, making it impossible to study the role of eya expression during later steps of retinal differentiation. We have identified two new regulatory regions that control eya expression during retinal development. These two enhancers are necessary to maintain eya expression anterior to the MF (eya-IAM) and in photoreceptors (eya-PSE), respectively. We find that deleting these enhancers affects developmental events anterior to the MF as well as retinal differentiation posterior to the MF. In line with previous results, we find that reducing eya expression anterior to the MF affects several early steps during early retinal differentiation, including cell cycle arrest and expression of the proneural gene ato. Consistent with previous observations that suggest a role for eya in cell proliferation during early development we find that deletion of eya-IAM leads to a marked reduction in the size of the adult retinal field. On the other hand, deletion of eya-PSE leads to defects in cone and pigment cell development. In addition we find that eya expression is necessary to activate expression of the cone cell marker Cut and to regulate levels of the Hedgehog pathway effector Ci. In summary, our study uncovers novel aspects of eya-mediated regulation of eye development. The genetic tools generated in this study will allow for a detailed study of how the RD network regulates key steps in eye formation.
Collapse
|
15
|
Multiple mechanisms modulate distinct cellular susceptibilities toward apoptosis in the developing Drosophila eye. Dev Cell 2014; 30:48-60. [PMID: 24981611 DOI: 10.1016/j.devcel.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/09/2014] [Accepted: 05/10/2014] [Indexed: 02/06/2023]
Abstract
Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility toward apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hr. Mitotic cells are extremely susceptible to apoptotic signals, while postmitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1, resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independent of EGFR or Diap1. These examples illustrate how complex cellular susceptibility toward apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development, and tumor cells may take advantage of it.
Collapse
|
16
|
Treisman JE. Retinal differentiation in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:545-57. [PMID: 24014422 DOI: 10.1002/wdev.100] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement.
Collapse
Affiliation(s)
- Jessica E Treisman
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
17
|
A network of broadly expressed HLH genes regulates tissue-specific cell fates. Cell 2012; 147:881-92. [PMID: 22078884 DOI: 10.1016/j.cell.2011.08.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 07/06/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Spatial and temporal expression of specific basic-helix-loop-helix (bHLH) transcription factors defines many types of cellular differentiation. We find that a distinct mechanism regulates the much broader expression of the heterodimer partners of these specific factors and impinges on differentiation. In Drosophila, a cross-interacting regulatory network links expression of the E protein Daughterless (Da), which heterodimerizes with bHLH proteins to activate them, with expression of the Id protein Extramacrochaetae (Emc), which antagonizes bHLH proteins. Coupled transcriptional feedback loops maintain the widespread Emc expression that restrains Da expression, opposing bHLH-dependent differentiation while enhancing growth and cell survival. Where extracellular signals repress emc, Da expression can increase. This defines regions of proneural ectoderm independently from the proneural bHLH genes. Similar regulation is found in multiple Drosophila tissues and in mammalian cells and therefore is likely to be a conserved general feature of developmental regulation by HLH proteins.
Collapse
|
18
|
In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling. PLoS One 2011; 6:e24168. [PMID: 21931660 PMCID: PMC3169580 DOI: 10.1371/journal.pone.0024168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
Abstract
Hedgehog (Hh) signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi) screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub) and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12) that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci), the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling.
Collapse
|
19
|
Lubensky DK, Pennington MW, Shraiman BI, Baker NE. A dynamical model of ommatidial crystal formation. Proc Natl Acad Sci U S A 2011; 108:11145-50. [PMID: 21690337 PMCID: PMC3131319 DOI: 10.1073/pnas.1015302108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The crystalline photoreceptor lattice in the Drosophila eye is a paradigm for pattern formation during development. During eye development, activation of proneural genes at a moving front adds new columns to a regular lattice of R8 photoreceptors. We present a mathematical model of the governing activator-inhibitor system, which indicates that the dynamics of positive induction play a central role in the selection of certain cells as R8s. The "switch and template" patterning mechanism we observe is mathematically very different from the well-known Turing instability. Unlike a standard lateral inhibition model, our picture implies that R8s are defined before the appearance of the complete group of proneural cells. The model reproduces the full time course of proneural gene expression and accounts for specific features of the refinement of proneural groups that had resisted explanation. It moreover predicts that perturbing the normal template can lead to eyes containing stripes of R8 cells. We observed these stripes experimentally after manipulation of the Notch and scabrous genes. Our results suggest an alternative to the generally assumed mode of operation for lateral inhibition during development; more generally, they hint at a broader role for bistable switches in the initial establishment of patterns as well as in their maintenance.
Collapse
Affiliation(s)
- David K Lubensky
- Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.
| | | | | | | |
Collapse
|
20
|
Camp D, Currie K, Labbé A, van Meyel DJ, Charron F. Ihog and Boi are essential for Hedgehog signaling in Drosophila. Neural Dev 2010; 5:28. [PMID: 21044292 PMCID: PMC2984377 DOI: 10.1186/1749-8104-5-28] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022] Open
Abstract
Background The Hedgehog (Hh) signaling pathway is important for the development of a variety of tissues in both vertebrates and invertebrates. For example, in developing nervous systems Hh signaling is required for the normal differentiation of neural progenitors into mature neurons. The molecular signaling mechanism underlying the function of Hh is not fully understood. In Drosophila, Ihog (Interference hedgehog) and Boi (Brother of Ihog) are related transmembrane proteins of the immunoglobulin superfamily (IgSF) with orthologs in vertebrates. Members of this IgSF subfamily have been shown to bind Hh and promote pathway activation but their exact role in the Hh signaling pathway has remained elusive. To better understand this role in vivo, we generated loss-of-function mutations of the ihog and boi genes, and investigated their effects in developing eye and wing imaginal discs. Results While mutation of either ihog or boi alone had no discernible effect on imaginal tissues, cells in the developing eye disc that were mutant for both ihog and boi failed to activate the Hh pathway, causing severe disruption of photoreceptor differentiation in the retina. In the anterior compartment of the developing wing disc, where different concentrations of the Hh morphogen elicit distinct cellular responses, cells mutant for both ihog and boi failed to activate responses at either high or low thresholds of Hh signaling. They also lost their affinity for neighboring cells and aberrantly sorted out from the anterior compartment of the wing disc into posterior territory. We found that ihog and boi are required for the accumulation of the essential Hh signaling mediator Smoothened (Smo) in Hh-responsive cells, providing evidence that Ihog and Boi act upstream of Smo in the Hh signaling pathway. Conclusions The consequences of boi;ihog mutations for eye development, neural differentiation and wing patterning phenocopy those of smo mutations and uncover an essential role for Ihog and Boi in the Hh signaling pathway.
Collapse
Affiliation(s)
- Darius Camp
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
21
|
Amore G, Casares F. Size matters: the contribution of cell proliferation to the progression of the specification Drosophila eye gene regulatory network. Dev Biol 2010; 344:569-77. [PMID: 20599903 DOI: 10.1016/j.ydbio.2010.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 01/02/2023]
Abstract
Organ development is a complex process in which the activity of scores of interacting transcription factors and signaling pathways need to be integrated with proliferative growth. Developmental gene regulatory networks (GRNs) allow capturing essential regulatory pathways at a systems-level and provide an effective way of approaching such complexity. However typical GRNs studies focus on very early embryonic stages (usually pre-gastrulation) or late stages, when there is little or no cell proliferation, and therefore do not consider how organ growth is integrated in the developmental process. This can be conveniently investigated in the Drosophila melanogaster eye primordium. Here we present a working model meant to illustrate how during a critical period, the second larval stage, changes in cells' proliferative pattern are coordinated with the initiation of the Retinal Determination (RD) gene program. Such changes are regulated in response to two different sources of signal (Wnt1/wg and BMP2/4/dpp) produced by the anterior and posterior ends of the primordium, respectively. The dpp signaling is necessary to trigger the RD program. However in order for it to be effective, cells receiving Dpp have to be out of the wg signaling range. This is obtained thanks to the proliferative growth that precedes the onset of RD expression. With this network model many of the gene regulatory steps previously known to participate in growth and patterning are linked. Analysis of the model highlights a few essential regulatory principles, as well as poses new questions. In addition, these principles might operate during the growth and patterning of other organs.
Collapse
Affiliation(s)
- Gabriele Amore
- Animal Physiology and Evolutionary Laboratory-Stazione Zoologica Anton Dohrn, Napoli, Italy.
| | | |
Collapse
|