1
|
Williams RM. Leveraging chicken embryos for studying human enhancers. Dev Biol 2025; 524:123-131. [PMID: 40368318 DOI: 10.1016/j.ydbio.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The dynamic activity of complex gene regulatory networks stands at the core of all cellular functions that define cell identity and behaviour. Gene regulatory networks comprise transcriptional enhancers, acted upon by cell-specific transcription factors to control gene expression in a spatial and temporal specific manner. Enhancers are found in the non-coding genome; pathogenic variants can disrupt enhancer activity and lead to disease. Correlating non-coding variants with aberrant enhancer activity remains a significant challenge. Due to their clinical significance, there is a longstanding interest in understanding enhancer function during early embryogenesis. With the onset of the omics era, it is now feasible to identify putative tissue-specific enhancers from epigenome data. However, such predictions in vivo require validation. The early stages of chick embryogenesis closely parallel those of human, offering an accessible in vivo model in which to assess the activity of putative human enhancer sequences. This review explores the unique advantages and recent advancements in employing chicken embryos to elucidate the activity of human transcriptional enhancers and the potential implications of these findings in human disease.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
2
|
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head. Curr Top Dev Biol 2020; 139:127-167. [PMID: 32450959 DOI: 10.1016/bs.ctdb.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensory placodes and neural crest cells are among the key cell populations that facilitated the emergence and diversification of vertebrates throughout evolution. Together, they generate the sensory nervous system in the head: both form the cranial sensory ganglia, while placodal cells make major contributions to the sense organs-the eye, ear and olfactory epithelium. Both are instrumental for integrating craniofacial organs and have been key to drive the concentration of sensory structures in the vertebrate head allowing the emergence of active and predatory life forms. Whereas the gene regulatory networks that control neural crest cell development have been studied extensively, the signals and downstream transcriptional events that regulate placode formation and diversity are only beginning to be uncovered. Both cell populations are derived from the embryonic ectoderm, which also generates the central nervous system and the epidermis, and recent evidence suggests that their initial specification involves a common molecular mechanism before definitive neural, neural crest and placodal lineages are established. In this review, we will first discuss the transcriptional networks that pattern the embryonic ectoderm and establish these three cell fates with emphasis on sensory placodes. Second, we will focus on how sensory placode precursors diversify using the specification of otic-epibranchial progenitors and their segregation as an example.
Collapse
|
3
|
Nasal and otic placode specific regulation of Sox2 involves both activation by Sox-Sall4 synergism and multiple repression mechanisms. Dev Biol 2018; 433:61-74. [DOI: 10.1016/j.ydbio.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
|
4
|
Ladher RK. Changing shape and shaping change: Inducing the inner ear. Semin Cell Dev Biol 2017; 65:39-46. [DOI: 10.1016/j.semcdb.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
|
5
|
Chen J, Tambalo M, Barembaum M, Ranganathan R, Simões-Costa M, Bronner ME, Streit A. A systems-level approach reveals new gene regulatory modules in the developing ear. Development 2017; 144:1531-1543. [PMID: 28264836 PMCID: PMC5399671 DOI: 10.1242/dev.148494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 01/23/2023]
Abstract
The inner ear is a complex vertebrate sense organ, yet it arises from a simple epithelium, the otic placode. Specification towards otic fate requires diverse signals and transcriptional inputs that act sequentially and/or in parallel. Using the chick embryo, we uncover novel genes in the gene regulatory network underlying otic commitment and reveal dynamic changes in gene expression. Functional analysis of selected transcription factors reveals the genetic hierarchy underlying the transition from progenitor to committed precursor, integrating known and novel molecular players. Our results not only characterize the otic transcriptome in unprecedented detail, but also identify new gene interactions responsible for inner ear development and for the segregation of the otic lineage from epibranchial progenitors. By recapitulating the embryonic programme, the genes and genetic sub-circuits discovered here might be useful for reprogramming naïve cells towards otic identity to restore hearing loss. Summary: Transcriptome analysis and knock down of select transcription factors reveals a genetic hierarchy as cells become committed to inner ear fate.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Monica Tambalo
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Meyer Barembaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ramya Ranganathan
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Marcos Simões-Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
6
|
Uribe RA, Buzzi AL, Bronner ME, Strobl-Mazzulla PH. Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression. J Cell Biol 2016; 211:815-27. [PMID: 26598618 PMCID: PMC4657164 DOI: 10.1083/jcb.201503071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In vertebrate embryos, the histone demethylase KDM4B affects otic placode proliferation, intercellular adhesion, and invagination by directly regulating Dlx3 expression. In vertebrates, the inner ear arises from the otic placode, a thickened swathe of ectoderm that invaginates to form the otic vesicle. We report that histone demethylase KDM4B is dynamically expressed during early stages of chick inner ear formation. A loss of KDM4B results in defective invagination and striking morphological changes in the otic epithelium, characterized by abnormal localization of adhesion and cytoskeletal molecules and reduced expression of several inner ear markers, including Dlx3. In vivo chromatin immunoprecipitation reveals direct and dynamic occupancy of KDM4B and its target, H3K9me3, at regulatory regions of the Dlx3 locus. Accordingly, coelectroporations of DLX3 or KDM4B encoding constructs, but not a catalytically dead mutant of KDM4B, rescue the ear invagination phenotype caused by KDM4B knockdown. Moreover, a loss of DLX3 phenocopies a loss of KDM4B. Collectively, our findings suggest that KDM4B play a critical role during inner ear invagination via modulating histone methylation of the direct target Dlx3.
Collapse
Affiliation(s)
- Rosa A Uribe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Ailín L Buzzi
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| |
Collapse
|
7
|
Chen J, Streit A. A medium-scale assay for enhancer validation in amniotes. Dev Dyn 2015; 244:1291-9. [PMID: 26177930 PMCID: PMC4973829 DOI: 10.1002/dvdy.24306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
Background Enhancers are key elements to control gene expression in time and space and thus orchestrate gene function during development, homeostasis, and disease. Whole genome approaches and bioinformatic predictions have generated a tremendous pool of potential enhancers, however their spatiotemporal activity often remains to be validated in vivo. Despite recent progress in developing high throughput strategies for enhancer evaluation, these remain mainly restricted to invertebrates and in vitro cell culture. Results Here we design a medium‐scale method to validate potential enhancers in an amniote embryo, the chick. Using a unique barcode for different reporter vectors allows us to detect the activity of nine separate enhancers in a single embryo by one‐step RT‐PCR. The assay is sufficiently sensitive to expand its capacity further by generating additional barcoded vectors. Conclusions As a rapid, sensitive, and cost‐effective way to assess enhancer activity in an amniote vertebrate, this method provides a major advance and a useful alternative to the generation of transgenic animals. Developmental Dynamics 244:1291–1299, 2015. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists Design of a new strategy for rapid enhancer validation in an amniote embryo, the chick. Generation of a simple vector for rapid cloning. The activity of many enhancers can be detected in a single embryo using a PCR‐based strategy. The assay is sufficiently sensitive to detect activity in a small fraction of cells.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, United Kingdom
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
9
|
Streit A, Tambalo M, Chen J, Grocott T, Anwar M, Sosinsky A, Stern CD. Experimental approaches for gene regulatory network construction: the chick as a model system. Genesis 2012; 51:296-310. [PMID: 23174848 DOI: 10.1002/dvg.22359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 01/23/2023]
Abstract
Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Despite its complexity in the adult, during development the inner ear arises from a simple epithelium, the otic placode. Placode specification is a multistep process that involves the integration of various signalling pathways and downstream transcription factors in time and space. Here we review the molecular events that successively commit multipotent ectodermal precursors to the otic lineage. The first step in this hierarchy is the specification of sensory progenitor cells, which can contribute to all sensory placodes, followed by the induction of a common otic-epibranchial field and finally the establishment the otic territory. In recent years, some of the molecular components that control this process have been identified, and begin to reveal complex interactions. Future studies will need to unravel how this information is integrated and encoded in the genome. This will form the blueprint for stem cell differentiation towards otic fates and generate a predictive gene regulatory network that models the earliest steps of otic specification.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | |
Collapse
|
11
|
Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective. Dev Biol 2012; 370:3-23. [PMID: 22790010 DOI: 10.1016/j.ydbio.2012.06.028] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.
Collapse
Affiliation(s)
- Timothy Grocott
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | | | |
Collapse
|
12
|
Lleras-Forero L, Streit A. Development of the sensory nervous system in the vertebrate head: the importance of being on time. Curr Opin Genet Dev 2012; 22:315-22. [PMID: 22726669 DOI: 10.1016/j.gde.2012.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 12/18/2022]
Abstract
Sense organs and cranial sensory ganglia are functionally diverse, yet share a common developmental origin. They arise from a pool of multipotent progenitors and local signals gradually restrict their development potential to specify the inner ear, olfactory epithelium, lens and sensory neurons. This process requires the temporal integration of multiple signalling pathways, cross-repressive transcription factor interactions and tight coordination of cell fate specification and morphogenesis.
Collapse
Affiliation(s)
- Laura Lleras-Forero
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
13
|
Neff AW, King MW, Mescher AL. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev Dyn 2011; 240:979-89. [DOI: 10.1002/dvdy.22554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2010] [Indexed: 01/12/2023] Open
|