1
|
Kim H, Little JC, Li J, Patel B, Kalderon D. Hedgehog-stimulated phosphorylation at multiple sites activates Ci by altering Ci-Ci interfaces without full Suppressor of Fused dissociation. PLoS Biol 2025; 23:e3003105. [PMID: 40215228 PMCID: PMC12052134 DOI: 10.1371/journal.pbio.3003105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 05/05/2025] [Accepted: 03/07/2025] [Indexed: 05/07/2025] Open
Abstract
Hedgehog (Hh) proteins elicit dose-dependent transcriptional responses by binding Patched receptors to activate transmembrane Smoothened (Smo) proteins. Activated Smo inhibits Ci/Gli transcription factor phosphorylation by Protein Kinase A and consequent proteolytic processing to repressor forms; it also promotes nuclear transport and activity of full-length Ci/Gli proteins to induce Hh target genes. Smo-activated Fused (Fu) kinase drives Ci activation in Drosophila, while Suppressor of Fused (Su(fu)) counters full-length Ci/Gli activity and stabilizes full-length Ci/Gli by direct binding to at least three surfaces. Here, we used CRISPR-generated designer ci alleles to investigate alterations to Fu phosphorylation sites and to regions around Ci-Su(fu) interfaces under physiological conditions in Drosophila imaginal wing discs. Surprisingly, we identified alterations that activate Ci without significant loss of stabilization by Su(fu) and contributions of multiple Fu target sites to Ci activation in the absence of Su(fu), suggesting that the affected sites mediate Ci activation by regulating Ci-Ci, rather than Ci-Su(fu) interactions. We propose that those interactions maintain full-length Ci in a closed conformation that also facilitates, and is stabilized by, cooperative Ci-Su(fu) binding. Access to binding partners necessary for Ci activation is promoted through phosphorylation of at least four Fu sites on Ci, likely by directly disrupting Ci-Ci contacts and one Ci-Su(fu) interface without substantial Ci-Su(fu) dissociation, contrary to previous proposals. We also found that the Ci binding partner, Costal 2 (Cos2), which silences Ci in the absence of Hh, can facilitate Ci activation by Fu kinase.
Collapse
Affiliation(s)
- Hoyon Kim
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jamie C. Little
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jiashen Li
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Bryna Patel
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
2
|
Kim H, Little J, Li J, Patel B, Kalderon D. Physiological analysis of the mechanism of Ci transcription factor activation through multiple Fused phosphorylation sites in Hedgehog signal transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634727. [PMID: 39896583 PMCID: PMC11785250 DOI: 10.1101/2025.01.24.634727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hedgehog (Hh) proteins elicit dose-dependent transcriptional responses by binding Patched receptors to activate transmembrane Smoothened (Smo) proteins. Activated Smo inhibits Ci/Gli transcription factor phosphorylation by Protein Kinase A (PKA) and consequent proteolytic processing to repressor forms; it also promotes nuclear transport and activity of full-length Ci/Gli proteins to induce Hh target genes. Smo-activated Fused (Fu) kinase drives Ci activation in Drosophila, while Suppressor of Fused (Su(fu)) counters full-length Ci/Gli activity and stabilizes full-length Ci/Gli by direct binding to at least three surfaces. Here, we used CRISPR-generated designer ci alleles to investigate alterations to Fu phosphorylation sites and to regions around Ci-Su(fu) interfaces under physiological conditions in Drosophila imaginal wing discs. Surprisingly, we identified alterations that activate Ci without significant loss of stabilization by Su(fu) and contributions of multiple Fu target sites to Ci activation in the absence of Su(fu), suggesting that the affected sites mediate Ci activation by regulating Ci-Ci, rather than Ci-Su(fu) interactions. We propose that those interactions maintain full-length Ci in a closed conformation that also facilitates, and is stabilized by, cooperative Ci-Su(fu) binding. Access to binding partners necessary for Ci activation is promoted through phosphorylation of at least four Fu sites on Ci, likely by directly disrupting Ci-Ci contacts and one Ci-Su(fu) interface without substantial Ci-Su(fu) dissociation, contrary to previous proposals. We also found that the Ci binding partner, Costal 2 (Cos2), which silences Ci in the absence of Hh, can facilitate Ci activation by Fu kinase.
Collapse
Affiliation(s)
- Hoyon Kim
- Department of Biological Sciences, Columbia University, New York, NY USA
| | | | | | - Bryna Patel
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY USA
| |
Collapse
|
3
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
4
|
Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions. Nat Cell Biol 2022; 24:1088-1098. [PMID: 35725768 PMCID: PMC10016618 DOI: 10.1038/s41556-022-00935-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.
Collapse
|
5
|
Little JC, Garcia-Garcia E, Sul A, Kalderon D. Drosophila hedgehog can act as a morphogen in the absence of regulated Ci processing. eLife 2020; 9:61083. [PMID: 33084577 PMCID: PMC7679133 DOI: 10.7554/elife.61083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022] Open
Abstract
Extracellular Hedgehog (Hh) proteins induce transcriptional changes in target cells by inhibiting the proteolytic processing of full-length Drosophila Ci or mammalian Gli proteins to nuclear transcriptional repressors and by activating the full-length Ci or Gli proteins. We used Ci variants expressed at physiological levels to investigate the contributions of these mechanisms to dose-dependent Hh signaling in Drosophila wing imaginal discs. Ci variants that cannot be processed supported a normal pattern of graded target gene activation and the development of adults with normal wing morphology, when supplemented by constitutive Ci repressor, showing that Hh can signal normally in the absence of regulated processing. The processing-resistant Ci variants were also significantly activated in the absence of Hh by elimination of Cos2, likely acting through binding the CORD domain of Ci, or PKA, revealing separate inhibitory roles of these two components in addition to their well-established roles in promoting Ci processing. Morphogens play a crucial role in determining how cells are organized in developing organisms. These chemical signals act over a wide area, and the amount of signal each cell receives typically initiates a sequence of events that spatially pattern the multiple cells of an organ or tissue. One of the most well-studied groups of morphogens are the hedgehog proteins, which are involved in the development of many animals, ranging from flies to humans. In fruit flies, hedgehog proteins kickstart a cascade of molecular changes that switch on a set of 'target' genes. They do this by ultimately altering the activity of a protein called cubitus interruptus, which comes in two lengths: a long version called Ci-155 and a short version called Ci-75. When hedgehog is absent, Ci-155 is kept in an inactive state in the cytoplasm, where it is slowly converted into its shorter form, Ci-75: this repressor protein is then able to access the nucleus, where it switches ‘off’ the target genes. However, when a hedgehog signal is present, the processing of Ci into its shorter form is inhibited. Instead, Ci-155 becomes activated by a separate mechanism that allows the long form protein to enter the nucleus and switch ‘on’ the target genes. But it was unclear whether hedgehog requires both of these mechanisms in order to act as a morphogen and regulate the activity of developmental genes. To answer this question, Little et al. mutated the gene for Ci in the embryo of fruit flies, so that the Ci-155 protein could no longer be processed into Ci-75. Examining the developing wings of these flies revealed that the genes targeted by hedgehog are still activated in the correct pattern. In some parts of the wing, Ci-75 is required to switch off specific sets of genes. But when Little et al. blocked these genes, by adding a gene that constantly produces the Ci repressor in the presence or absence of hedgehog, the adult flies still developed normally structured wings. This suggests that hedgehog does not need to regulate the processing of Ci-155 into Ci-75 in order to perform its developmental role. Previous work showed that when one of the major mechanisms used by hedgehog to activate Ci-155 is blocked, fruit flies are still able to develop normal wings. Taken together with the findings of Little et al., this suggests that the two mechanisms induced by hedgehog can compensate for each other, and independently regulate the development of the fruit fly wing. These mechanisms, which are also found in humans, have been linked to birth defects and several common types of cancer, and understanding how they work could help the development of new treatments.
Collapse
Affiliation(s)
- Jamie C Little
- Department of Biological Sciences, Columbia University, New York, United States
| | - Elisa Garcia-Garcia
- Department of Biological Sciences, Columbia University, New York, United States
| | - Amanda Sul
- Department of Biological Sciences, Columbia University, New York, United States
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
6
|
The Exon Junction Complex and Srp54 Contribute to Hedgehog Signaling via ci RNA Splicing in Drosophila melanogaster. Genetics 2017. [PMID: 28637711 DOI: 10.1534/genetics.117.202457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hedgehog (Hh) regulates the Cubitus interruptus (Ci) transcription factor in Drosophila melanogaster by activating full-length Ci-155 and blocking processing to the Ci-75 repressor. However, the interplay between the regulation of Ci-155 levels and activity, as well as processing-independent mechanisms that affect Ci-155 levels, have not been explored extensively. Here, we identified Mago Nashi (Mago) and Y14 core Exon Junction Complex (EJC) proteins, as well as the Srp54 splicing factor, as modifiers of Hh pathway activity under sensitized conditions. Mago inhibition reduced Hh pathway activity by altering the splicing pattern of ci to reduce Ci-155 levels. Srp54 inhibition also affected pathway activity by reducing ci RNA levels but additionally altered Ci-155 levels and activity independently of ci splicing. Further tests using ci transgenes and ci mutations confirmed evidence from studying the effects of Mago and Srp54 that relatively small changes in the level of Ci-155 primary translation product alter Hh pathway activity under a variety of sensitized conditions. We additionally used ci transgenes lacking intron sequences or the presumed translation initiation codon for an alternatively spliced ci RNA to provide further evidence that Mago acts principally by modulating the levels of the major ci RNA encoding Ci-155, and to show that ci introns are necessary to support the production of sufficient Ci-155 for robust Hh signaling and may also be important mediators of regulatory inputs.
Collapse
|
7
|
Sanial M, Bécam I, Hofmann L, Behague J, Argüelles C, Gourhand V, Bruzzone L, Holmgren RA, Plessis A. Dose-dependent transduction of Hedgehog relies on phosphorylation-based feedback between the G-protein-coupled receptor Smoothened and the kinase Fused. Development 2017; 144:1841-1850. [PMID: 28360132 DOI: 10.1242/dev.144782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Abstract
Smoothened (SMO) is a G-protein-coupled receptor-related protein required for the transduction of Hedgehog (HH). The HH gradient leads to graded phosphorylation of SMO, mainly by the PKA and CKI kinases. How thresholds in HH morphogen regulate SMO to promote switch-like transcriptional responses is a central unsolved issue. Using the wing imaginal disc model in Drosophila, we identified new SMO phosphosites that enhance the effects of the PKA/CKI kinases on SMO accumulation, its localization at the plasma membrane and its activity. Surprisingly, phosphorylation at these sites is induced by the kinase Fused (FU), a known downstream effector of SMO. In turn, activation of SMO induces FU to act on its downstream targets. Overall, our data provide evidence for a SMO/FU positive regulatory loop nested within a multikinase phosphorylation cascade. We propose that this complex interplay amplifies signaling above a threshold that allows high HH signaling.
Collapse
Affiliation(s)
- Matthieu Sanial
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Isabelle Bécam
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Line Hofmann
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Julien Behague
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Camilla Argüelles
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Vanessa Gourhand
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Lucia Bruzzone
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Robert A Holmgren
- Department of Molecular Bioscience, Northwestern University, Evanston, IL 60208-3500, USA
| | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| |
Collapse
|
8
|
Oh S, Kato M, Zhang C, Guo Y, Beachy PA. A Comparison of Ci/Gli Activity as Regulated by Sufu in Drosophila and Mammalian Hedgehog Response. PLoS One 2015; 10:e0135804. [PMID: 26271100 PMCID: PMC4536226 DOI: 10.1371/journal.pone.0135804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/27/2015] [Indexed: 01/20/2023] Open
Abstract
Suppressor of fused (Su(fu)/Sufu), one of the most conserved components of the Hedgehog (Hh) signaling pathway, binds Ci/Gli transcription factors and impedes activation of target gene expression. In Drosophila, the Su(fu) mutation has a minimal phenotype, and we show here that Ci transcriptional activity in large part is regulated independently of Su(fu) by other pathway components. Mutant mice lacking Sufu in contrast show excessive pathway activity and die as embryos with patterning defects. Here we show that in cultured cells Hh stimulation can augment transcriptional activity of a Gli2 variant lacking Sufu interaction and, surprisingly, that regulation of Hh pathway targets is nearly normal in the neural tube of Sufu-/- mutant embryos that also lack Gli1 function. Some degree of Hh-induced transcriptional activation of Ci/Gli thus can occur independently of Sufu in both flies and mammals. We further note that Sufu loss can also reduce Hh induction of high-threshold neural tube fates, such as floor plate, suggesting a possible positive pathway role for Sufu.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Masaki Kato
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chi Zhang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yurong Guo
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Philip A. Beachy
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zadorozny EV, Little JC, Kalderon D. Contributions of Costal 2-Fused interactions to Hedgehog signaling in Drosophila. Development 2015; 142:931-42. [PMID: 25633354 DOI: 10.1242/dev.112904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila kinesin-family protein Costal 2 (Cos2) and its mammalian ortholog Kif7 play dual roles in Hedgehog (Hh) signaling. In the absence of Hh, Cos2 and Kif7 contribute to proteolytic processing and silencing of the Hh-regulated transcription factors, Drosophila Cubitus interruptus (Ci) and mammalian Gli proteins. Cos2 and Kif7 are also necessary for full activation of full-length Ci-155 and Gli transcription factors in response to Hh proteins. Here, we use classical fused alleles and transgenic Cos2 products deficient for Fused (Fu) association to show that Cos2 must bind to Fu to support efficient Ci-155 processing. Residual Ci-155 processing in the absence of Cos2-Fu interaction did not require Suppressor of Fused, which has been implicated in processing mammalian Gli proteins. We also provide evidence that Cos2 binding to the CORD domain of Ci-155 contributes to both Ci-155 processing and Ci-155 silencing in the absence of Hh. In the presence of Hh, Ci-155 processing is blocked and Cos2 now promotes activation of Ci-155, which requires Fu kinase activity. Here, we show that normal Ci-155 activation by Hh requires Cos2 binding to Fu, supporting the hypothesis that Cos2 mediates the apposition of Fu molecules suitable for cross-phosphorylation and consequent full activation of Fu kinase. We also find that phosphorylation of Cos2 by Fu at two previously mapped sites, S572 and S931, which is thought to mediate Ci-155 activation, is not required for normal activation of Ci-155 by Hh or by activated Fu.
Collapse
Affiliation(s)
- Eva V Zadorozny
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jamie C Little
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
10
|
Liu YC, Couzens AL, Deshwar AR, B McBroom-Cerajewski LD, Zhang X, Puviindran V, Scott IC, Gingras AC, Hui CC, Angers S. The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling. Sci Signal 2014; 7:ra117. [PMID: 25492966 DOI: 10.1126/scisignal.2005608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary cilium is required for Hedgehog (Hh) signaling in vertebrates. Hh leads to ciliary accumulation and activation of the transmembrane protein Smoothened (Smo) and affects the localization of several pathway components, including the Gli family of transcriptional regulators, within different regions of primary cilia. Genetic analysis indicates that the kinesin protein Kif7 both promotes and inhibits mouse Hh signaling. Using mass spectrometry, we identified liprin-α1 (PPFIA1) and the protein phosphatase PP2A as Kif7-interacting proteins, and we showed that they were important for the trafficking of Kif7 and Gli proteins to the tips of cilia and for the transcriptional output of Hh signaling. Our results suggested that PPFIA1 functioned with PP2A to promote the dephosphorylation of Kif7, triggering Kif7 localization to the tips of primary cilia and promoting Gli transcriptional activity.
Collapse
Affiliation(s)
- Yulu C Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Amber L Couzens
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Ashish R Deshwar
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Xiaoyun Zhang
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vijitha Puviindran
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ian C Scott
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chi-Chung Hui
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada. Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
11
|
Hartl TA, Scott MP. Wing tips: The wing disc as a platform for studying Hedgehog signaling. Methods 2014; 68:199-206. [PMID: 24556557 DOI: 10.1016/j.ymeth.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) signal transduction is necessary for the development of most mammalian tissues and can go awry and cause birth defects or cancer. Hh signaling was initially described in Drosophila, and much of what we know today about mammalian Hh signaling was directly guided by discoveries in the fly. Indeed, Hh signaling is a wonderful example of the use of non-vertebrate model organisms to make basic discoveries that lead to new disease treatment. The first pharmaceutical to treat hyperactive Hh signaling in Basal Cell Carcinoma was released in 2012, approximately 30 years after the isolation of Hh mutants in Drosophila. The study of Hh signaling has been greatly facilitated by the imaginal wing disc, a tissue with terrific experimental advantages. Studies using the wing disc have led to an understanding of Hh ligand processing, packaging into particles for transmission, secretion, reception, signal transduction, target gene activation, and tissue patterning. Here we describe the imaginal wing disc, how Hh patterns this tissue, and provide methods to use wing discs to study Hh signaling in Drosophila. The tools and approaches we highlight form the cornerstone of research efforts in many laboratories that use Drosophila to study Hh signaling, and are essential for ongoing discoveries.
Collapse
Affiliation(s)
- Tom A Hartl
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Carroll CE, Marada S, Stewart DP, Ouyang JX, Ogden SK. The extracellular loops of Smoothened play a regulatory role in control of Hedgehog pathway activation. Development 2012; 139:612-21. [PMID: 22223683 DOI: 10.1242/dev.075614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Hedgehog (Hh) signaling pathway plays an instructional role during development, and is frequently activated in cancer. Ligand-induced pathway activation requires signaling by the transmembrane protein Smoothened (Smo), a member of the G-protein-coupled receptor (GPCR) superfamily. The extracellular (EC) loops of canonical GPCRs harbor cysteine residues that engage in disulfide bonds, affecting active and inactive signaling states through regulating receptor conformation, dimerization and/or ligand binding. Although a functional importance for cysteines localized to the N-terminal extracellular cysteine-rich domain has been described, a functional role for a set of conserved cysteines in the EC loops of Smo has not yet been established. In this study, we mutated each of the conserved EC cysteines, and tested for effects on Hh signal transduction. Cysteine mutagenesis reveals that previously uncharacterized functional roles exist for Smo EC1 and EC2. We provide in vitro and in vivo evidence that EC1 cysteine mutation induces significant Hh-independent Smo signaling, triggering a level of pathway activation similar to that of a maximal Hh response in Drosophila and mammalian systems. Furthermore, we show that a single amino acid change in EC2 attenuates Hh-induced Smo signaling, whereas deletion of the central region of EC2 renders Smo fully active, suggesting that the conformation of EC2 is crucial for regulated Smo activity. Taken together, these findings are consistent with loop cysteines engaging in disulfide bonds that facilitate a Smo conformation that is silent in the absence of Hh, but can transition to a fully active state in response to ligand.
Collapse
Affiliation(s)
- Candace E Carroll
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
13
|
Marks SA, Kalderon D. Regulation of mammalian Gli proteins by Costal 2 and PKA in Drosophila reveals Hedgehog pathway conservation. Development 2011; 138:2533-42. [PMID: 21610030 DOI: 10.1242/dev.063479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hedgehog (Hh) signaling activates full-length Ci/Gli family transcription factors and prevents Ci/Gli proteolytic processing to repressor forms. In the absence of Hh, Ci/Gli processing is initiated by direct Pka phosphorylation. Despite those fundamental similarities between Drosophila and mammalian Hh pathways, the differential reliance on cilia and some key signal transduction components had suggested a major divergence in the mechanisms that regulate Ci/Gli protein activities, including the role of the kinesin-family protein Costal 2 (Cos2), which directs Ci processing in Drosophila. Here, we show that Cos2 binds to three regions of Gli1, just as for Ci, and that Cos2 functions to silence mammalian Gli1 in Drosophila in a Hh-regulated manner. Cos2 and the mammalian kinesin Kif7 can also direct Gli3 and Ci processing in fly, underscoring a fundamental conserved role for Cos2 family proteins in Hh signaling. We also show that direct PKA phosphorylation regulates the activity, rather than the proteolysis of Gli in Drosophilia, and we provide evidence for an analogous action of PKA on Ci.
Collapse
Affiliation(s)
- Steven A Marks
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
14
|
Zhou Q, Kalderon D. Hedgehog activates fused through phosphorylation to elicit a full spectrum of pathway responses. Dev Cell 2011; 20:802-14. [PMID: 21664578 DOI: 10.1016/j.devcel.2011.04.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/10/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
In flies and mammals, extracellular Hedgehog (Hh) molecules alter cell fates and proliferation by regulating the levels and activities of Ci/Gli family transcription factors. How Hh-induced activation of transmembrane Smoothened (Smo) proteins reverses Ci/Gli inhibition by Suppressor of Fused (SuFu) and kinesin family protein (Cos2/Kif7) binding partners is a major unanswered question. Here we show that the Fused (Fu) protein kinase is activated by Smo and Cos2 via Fu- and CK1-dependent phosphorylation. Activated Fu can recapitulate a full Hh response, stabilizing full-length Ci via Cos2 phosphorylation and activating full-length Ci by antagonizing Su(fu) and by other mechanisms. We propose that Smo/Cos2 interactions stimulate Fu autoactivation by concentrating Fu at the membrane. Autoactivation primes Fu for additional CK1-dependent phosphorylation, which further enhances kinase activity. In this model, Smo acts like many transmembrane receptors associated with cytoplasmic kinases, such that pathway activation is mediated by kinase oligomerization and trans-phosphorylation.
Collapse
Affiliation(s)
- Qianhe Zhou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|