1
|
Houtman A, Gruber S, Reisert H, Amini M, Fiore C, Gonzalez P, Han V, Jazic A, Kusupholnand M, Miller M, Nam J, Wang Z, Yu Y, Dong P, Oak ASW, Sharma A, Spana EP. Characterization of the tilt (tt) phenotype in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000788. [PMID: 37193546 PMCID: PMC10183093 DOI: 10.17912/micropub.biology.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
In the early 20th century, Calvin Bridges and Thomas Morgan identified a number of spontaneous mutations that displayed visible phenotypes in adult flies and subsequent analysis of these mutations over the past century have provided fundamental insights into subdisciplines of biology such as genetics, developmental, and cell biology. One of the mutations they identified in 1915 was named tilt ( tt ) and was described by Bridges and Morgan as having two visible phenotype characteristics in the wing. The wings were "held out at a wider angle from the body" and had a break in wing vein L3. Subsequent analysis of the tilt phenotype identified another phenotype: the wings were missing a varying number of campaniform sensilla on L3. Though Bridges and Morgan provided an ink drawing of the wing posture phenotype, only the vein and campaniform sensilla loss images have been published. Here we confirm and document the tilt phenotypes that have been previously described. We also show the penetrance of these phenotypes: the vein break and the distinct outward wing posture have decreased since its discovery.
Collapse
Affiliation(s)
- Arno Houtman
- Duke Kunshan University, Kunshan, Jiangsu, China
| | - Samuel Gruber
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Hailey Reisert
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Mina Amini
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Caroline Fiore
- Department of Biology, Duke University, Durham, North Carolina, United States
| | | | - Veronica Han
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Aeva Jazic
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Mie Kusupholnand
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Max Miller
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Jiung Nam
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Ziqin Wang
- Duke Kunshan University, Kunshan, Jiangsu, China
| | - Yang Yu
- Duke Kunshan University, Kunshan, Jiangsu, China
| | - Peter Dong
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Allen S. W. Oak
- Department of Biology, Duke University, Durham, North Carolina, United States
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arun Sharma
- Department of Biology, Duke University, Durham, North Carolina, United States
- Department of Biomedical Sciences; Board of Governors Regenerative Medicine Institute; and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Eric P Spana
- Department of Biology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
2
|
Wee JLQ, Murugesan SN, Wheat CW, Monteiro A. The genetic basis of wing spots in Pieris canidia butterflies. BMC Genomics 2023; 24:169. [PMID: 37016295 PMCID: PMC10074818 DOI: 10.1186/s12864-023-09261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-β, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Moucaud B, Prince E, Jagla K, Soler C. Developmental origin of tendon diversity in Drosophila melanogaster. Front Physiol 2023; 14:1176148. [PMID: 37143929 PMCID: PMC10151533 DOI: 10.3389/fphys.2023.1176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Myogenesis is a developmental process that is largely conserved in both Drosophila and higher organisms. Consequently, the fruit fly is an excellent in vivo model for identifying the genes and mechanisms involved in muscle development. Moreover, there is growing evidence indicating that specific conserved genes and signaling pathways govern the formation of tissues that connect the muscles to the skeleton. In this review, we present an overview of the different stages of tendon development, from the specification of tendon progenitors to the assembly of a stable myotendinous junction across three different myogenic contexts in Drosophila: larval, flight and leg muscle development. We underline the different aspects of tendon cell specification and differentiation in embryo and during metamorphosis that result into tendon morphological and functional diversity.
Collapse
|
4
|
Neuronal role of taxi is imperative for flight in Drosophila melanogaster. Gene X 2022; 833:146593. [PMID: 35597528 DOI: 10.1016/j.gene.2022.146593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Extensive studies in Drosophila have led to the elucidation of the roles of many molecular players involved in the sensorimotor coordination of flight. However, the identification and characterisation of new players can add novel perspectives to the process. In this paper, we show that the extant mutant, jumper, is a hypermorphic allele of the taxi/delilah gene, which encodes a transcription factor. The defective flight of jumper flies results from the insertion of an I-element in the 5'-UTR of taxi gene, leading to an over-expression of the taxi. We also show that the molecular lesion responsible for the taxi1 allele results from a 25 bp deletion leading to a shift in the reading frame at the C-terminus of the taxi coding sequence. Thus, the last 20 residues are replaced by 32 disparate residues in taxi1. Both taxi1, a hypomorphic allele, and the CRISPR-Cas9 knock-out (taxiKO) null allele, show a defective flight phenotype. Electrophysiological studies show taxi hypermorphs, hypomorphs, and knock out flies show abnormal neuronal firing. We further show that neuronal-specific knock-down or over-expression of taxi cause a defect in the brain's inputs to the flight muscles, leading to reduced flight ability. Through transcriptomic analysis of the taxiKO fly head, we have identified several putative targets of Taxi that may play important roles in flight. In conclusion, from molecularly characterising jumper to establishing Taxi's role during Drosophila flight, our work shows that the forward genetics approach still can lead to the identification of novel molecular players required for neuronal transmission.
Collapse
|
5
|
Leg length and bristle density, both necessary for water surface locomotion, are genetically correlated in water striders. Proc Natl Acad Sci U S A 2022; 119:2119210119. [PMID: 35193982 PMCID: PMC8892508 DOI: 10.1073/pnas.2119210119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Access to hitherto unexploited ecological opportunities is associated with phenotypic evolution and often results in significant lineage diversification. Yet our understanding of the mechanisms underlying such adaptive traits remains limited. Water striders have been able to exploit the water-air interface, primarily facilitated by changes in the density of hydrophobic bristles and a significant increase in leg length. These two traits are functionally correlated and are both necessary for generating efficient locomotion on the water surface. Whether bristle density and leg length have any cellular or developmental genetic mechanisms in common is unknown. Here, we combine comparative genomics and transcriptomics with functional RNA interference assays to examine the developmental genetic and cellular mechanisms underlying the patterning of the bristles and the legs in Gerris buenoi and Mesovelia mulsanti, two species of water striders. We found that two duplication events in the genes beadex and taxi led to a functional expansion of the paralogs, which affected bristle density and leg length. We also identified genes for which no function in bristle development has been previously described in other insects. Interestingly, most of these genes play a dual role in regulating bristle development and leg length. In addition, these genes play a role in regulating cell division. This result suggests that cell division may be a common mechanism through which these genes can simultaneously regulate leg length and bristle density. We propose that pleiotropy, through which gene function affects the development of multiple traits, may play a prominent role in facilitating access to unexploited ecological opportunities and species diversification.
Collapse
|
6
|
Avetisyan A, Glatt Y, Cohen M, Timerman Y, Aspis N, Nachman A, Halachmi N, Preger-Ben Noon E, Salzberg A. Delilah, prospero, and D-Pax2 constitute a gene regulatory network essential for the development of functional proprioceptors. eLife 2021; 10:70833. [PMID: 34964712 PMCID: PMC8716109 DOI: 10.7554/elife.70833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Coordinated animal locomotion depends on the development of functional proprioceptors. While early cell-fate determination processes are well characterized, little is known about the terminal differentiation of cells within the proprioceptive lineage and the genetic networks that control them. In this work we describe a gene regulatory network consisting of three transcription factors–Prospero (Pros), D-Pax2, and Delilah (Dei)–that dictates two alternative differentiation programs within the proprioceptive lineage in Drosophila. We show that D-Pax2 and Pros control the differentiation of cap versus scolopale cells in the chordotonal organ lineage by, respectively, activating and repressing the transcription of dei. Normally, D-Pax2 activates the expression of dei in the cap cell but is unable to do so in the scolopale cell where Pros is co-expressed. We further show that D-Pax2 and Pros exert their effects on dei transcription via a 262 bp chordotonal-specific enhancer in which two D-Pax2- and three Pros-binding sites were identified experimentally. When this enhancer was removed from the fly genome, the cap- and ligament-specific expression of dei was lost, resulting in loss of chordotonal organ functionality and defective larval locomotion. Thus, coordinated larval locomotion depends on the activity of a dei enhancer that integrates both activating and repressive inputs for the generation of a functional proprioceptive organ.
Collapse
Affiliation(s)
- Adel Avetisyan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Glatt
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Cohen
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Timerman
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nitay Aspis
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Atalya Nachman
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Naomi Halachmi
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Zou XP, Lin YG, Cen YJ, Ma K, Qiu BB, Feng QL, Zheng SC. Analyses of microRNAs and transcriptomes in the midgut of Spodoptera litura feeding on Brassica juncea. INSECT SCIENCE 2021; 28:533-547. [PMID: 32166878 DOI: 10.1111/1744-7917.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Spodoptera litura is a destructive agricultural pest in tropical and subtropical areas. Understanding the molecular mechanisms of S. litura adaptation to its preferred host plants may help identify target genes useful for pest control. We used high-throughput sequencing to characterize the expression patterns of messenger RNAs (mRNAs) and microRNAs (miRNAs) in the midgut of S. litura fed on Brassica juncea for 6 h and 48 h. A total of 108 known and 134 novel miRNAs were identified, 29 miRNAs and 237 mRNAs were differentially expressed at 6 h of B. juncea feeding, 26 miRNAs and 433 mRNAs were differentially expressed at 48 h. For the mRNAs, the up-regulated genes were mostly enriched in detoxification enzymes (cytochrome P450, esterase, glutathione S-transferase, uridine diphosphate-glucuronosyl transferase), while the down-regulated genes were mostly enriched in proteinases and immune-related genes. Furthermore, most detoxification enzymes begin to up-regulate at 6 h, while most digestion and immune-related genes begin to up- or down-regulate at 48 h. Eighteen and 37 differently expressed transcription factors were identified at 6 h and 48 h, which may regulate the functional genes. We acquired 136 and 41 miRNA versus mRNA pairs at 6 h and 48 h, respectively. Some down-regulated and up-regulated miRNAs were predicted to target detoxification enzymes and proteinases, respectively. Real-time quantitative polymerase chain reaction of nine randomly selected miRNAs and 28 genes confirmed the results of RNA-seq. This analyses of miRNA and mRNA transcriptomes provides useful information about the molecular mechanisms of S. litura response to B. juncea.
Collapse
Affiliation(s)
- Xiao-Peng Zou
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Guang Lin
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Jie Cen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Ma
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin-Bin Qiu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Genome-wide identification and characterization of basic helix-loop-helix genes in nine molluscs. Gene 2021; 785:145604. [PMID: 33766707 DOI: 10.1016/j.gene.2021.145604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors form a large superfamily that plays an important role in numerous physiological processes, including development and response to environmental stresses. In this study, the distribution of bHLH genes in nine molluscs was systematically investigated (including five bivalves, three gastropods and one cephalopod). Finally, 53-85 bHLH genes were identified from each genome and classified into corresponding families by using phylogenetic analysis. The results of gene structure and conserved motif analysis illustrated the hereditary conservation of bHLH transcription factors during evolution but showed low similarity in group C. Through transcription profile analysis of C. gigas and T. granosa, we found a important role of bHLH genes in responding to multiple external challenges and development; meanwhile, they also exhibited tissue-specific expression. Interestingly, we were also surprised to find different bHLH genes from the same group generally possess similar patterns expression that tends to simultaneously present high or lower expression of multiple challenges and different tissues in this study. In summary, this study lays the foundation for further investigation of the biological functions and evolution of molluscan bHLH genes.
Collapse
|
9
|
Hassan A, Timerman Y, Hamdan R, Sela N, Avetisyan A, Halachmi N, Salzberg A. An RNAi Screen Identifies New Genes Required for Normal Morphogenesis of Larval Chordotonal Organs. G3 (BETHESDA, MD.) 2018; 8:1871-1884. [PMID: 29678948 PMCID: PMC5982817 DOI: 10.1534/g3.118.200218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023]
Abstract
The proprioceptive chordotonal organs (ChO) of a fly larva respond to mechanical stimuli generated by muscle contractions and consequent deformations of the cuticle. The ability of the ChO to sense the relative displacement of its epidermal attachment sites likely depends on the correct mechanical properties of the accessory (cap and ligament) and attachment cells that connect the sensory unit (neuron and scolopale cell) to the cuticle. The genetic programs dictating the development of ChO cells with unique morphologies and mechanical properties are largely unknown. Here we describe an RNAi screen that focused on the ChO's accessory and attachment cells and was performed in 2nd instar larvae to allow for phenotypic analysis of ChOs that had already experienced mechanical stresses during larval growth. Nearly one thousand strains carrying RNAi constructs targeting more than 500 candidate genes were screened for their effects on ChO morphogenesis. The screen identified 31 candidate genes whose knockdown within the ChO lineage disrupted various aspects of cell fate determination, cell differentiation, cellular morphogenesis and cell-cell attachment. Most interestingly, one phenotypic group consisted of genes that affected the response of specific ChO cell types to developmental organ stretching, leading to abnormal pattern of cell elongation. The 'cell elongation' group included the transcription factors Delilah and Stripe, implicating them for the first time in regulating the response of ChO cells to developmental stretching forces. Other genes found to affect the pattern of ChO cell elongation, such as αTub85E, β1Tub56D, Tbce, CCT8, mys, Rac1 and shot, represent putative effectors that link between cell-fate determinants and the realization of cell-specific mechanical properties.
Collapse
Affiliation(s)
- Abeer Hassan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Yael Timerman
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Rana Hamdan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Nitzan Sela
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Adel Avetisyan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Naomi Halachmi
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
10
|
Wang XC, Liu Z, Jin LH. Anchor negatively regulates BMP signalling to control Drosophila wing development. Eur J Cell Biol 2018; 97:308-317. [PMID: 29735293 DOI: 10.1016/j.ejcb.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors play particularly important roles in many organisms. The novel Drosophila gene anchor is an orthologue of vertebrate GPR155. However, the roles of anchor in molecular functions and biological processes, especially in wing development, remain unknown. Knockdown of anchor resulted in an increased wing size and additional and thickened veins. These abnormal wing phenotypes were similar to those observed in BMP signalling gain-of-function experiments. We observed that the BMP signalling indicator p-Mad was significantly increased in wing discs in which anchor RNAi was induced in larvae and accumulated abnormally in intervein regions in pupae. Furthermore, the expression of target genes of the BMP signalling pathway was examined using a lacZ reporter, and the results indicated that omb and sal were substantially increased in anchor-knockdown wing discs. An investigation of genetic interactions between Anchor and the BMP signalling pathway revealed that the thickened and ectopic vein tissues were rescued by knocking down BMP levels. These results suggested that Anchor functions to negatively regulate BMP signalling during wing development and vein formation.
Collapse
Affiliation(s)
- Xiao Chun Wang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ziguang Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
11
|
Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae. G3-GENES GENOMES GENETICS 2017; 7:437-448. [PMID: 27913635 PMCID: PMC5295592 DOI: 10.1534/g3.116.034439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.
Collapse
|
12
|
Halachmi N, Nachman A, Salzberg A. A newly identified type of attachment cell is critical for normal patterning of chordotonal neurons. Dev Biol 2016; 411:61-71. [DOI: 10.1016/j.ydbio.2016.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/16/2016] [Accepted: 01/16/2016] [Indexed: 02/05/2023]
|
13
|
Schleede J, Blair SS. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster. PLoS Genet 2015; 11:e1005576. [PMID: 26440503 PMCID: PMC4595086 DOI: 10.1371/journal.pgen.1005576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues. Signaling between cells regulates many processes, including the choices cells make between different fates during development and regeneration, and misregulation of such signaling underlies many human pathologies. To understand how such signals control developmental decisions, it is necessary to elucidate both how cells regulate and respond to different levels of signaling, and how different types of signals combine and regulate each other. We have used genetic screening in the fruitfly Drosophila melanogaster to identify mutations that reduce or eliminate signals carried by Bone Morphogenetic Proteins (BMPs), and show that BMP signaling is sensitive Gyc76C, a peptide receptor that stimulates the production of cGMP in cells. We identify downstream intracellular effectors of this cGMP activity, but provide evidence that the effects on the BMP pathway are not mediated at the intracellular level, but rather through cGMP’s effects upon the extracellular matrix and matrix-remodeling proteinases, which in turn affects the activity of extracellular BMP-binding proteins. We discuss differences and parallels with other examples of cGMP activity in Drosophila melanogaster and mammals.
Collapse
Affiliation(s)
- Justin Schleede
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Seth S. Blair
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
14
|
Deconstructing the complexity of regulating common properties in different cell types: Lessons from the delilah gene. Dev Biol 2015; 403:180-91. [DOI: 10.1016/j.ydbio.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/26/2015] [Accepted: 05/10/2015] [Indexed: 11/21/2022]
|
15
|
Meighan CM, Kann AP, Egress ER. Transcription factor hlh-2/E/Daughterless drives expression of α integrin ina-1 during DTC migration in C. elegans. Gene 2015; 568:220-6. [PMID: 25982859 DOI: 10.1016/j.gene.2015.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/24/2022]
Abstract
Integrins are involved in a vast number of cell behaviors due to their roles in adhesion and signaling. The regulation of integrin expression is of particular interest as a mechanism to drive developmental events and for the role of altered integrin expression profiles in cancer. Dynamic regulation of the expression of integrin receptors is required for the migration of the distal tip cell (DTC) during gonadogenesis in Caenorhabditis elegans. α integrin ina-1 is required for DTC motility, yet is up-regulated by an unknown mechanism. Analysis of the promoter for α integrin ina-1 identified two E-box sequences that are required for ina-1 expression in the DTC. Knockdown of transcription factor hlh-2, an established E-box binding partner and ortholog of E/Daughterless, prevented expression of a transcriptional fusion of the ina-1 promoter to RFP and blocked DTC migration. Similarly, knockdown of hlh-2 also prevented expression of a translational fusion of the genomic ina-1 gene to GFP while blocking DTC migration. Knockdown of HLH-2 binding partner MIG-24 also reduced ina-1 expression and DTC migration. Overall, these results show that the transcription factor hlh-2 is required for up-regulation of ina-1 at the onset of DTC migration.
Collapse
Affiliation(s)
| | - Allison P Kann
- Christopher Newport University, Newport News, VA 23606, USA.
| | - Emily R Egress
- Christopher Newport University, Newport News, VA 23606, USA.
| |
Collapse
|
16
|
Bilousov O, Koval A, Keshelava A, Katanaev VL. Identification of novel elements of the Drosophila blisterome sheds light on potential pathological mechanisms of several human diseases. PLoS One 2014; 9:e101133. [PMID: 24968325 PMCID: PMC4072764 DOI: 10.1371/journal.pone.0101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which – apposition of the dorsal and ventral wing sheets during metamorphosis – is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Collapse
Affiliation(s)
- Oleksii Bilousov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amiran Keshelava
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Proteasome, but not autophagy, disruption results in severe eye and wing dysmorphia: a subunit- and regulator-dependent process in Drosophila. PLoS One 2013; 8:e80530. [PMID: 24282550 PMCID: PMC3839973 DOI: 10.1371/journal.pone.0080530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] Open
Abstract
Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}BxMS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly’s eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing’s, but not eye’s, morphogenetic organization and architecture. However, Atg9 proved indispensable for the maintenance of structural integrity of adult wings in aged flies. In toto, our findings clearly demonstrate the gene-specific fundamental contribution of proteasome, but not autophagy, in invertebrate eye and wing organ development.
Collapse
|
18
|
Meng X, Hu J, Xu X, Wang Z, Hu Q, Jin F, Ren S. Toxic effect of destruxin A on abnormal wing disc-like (SLAWD) in Spodoptera litura fabricius (Lepidoptera: Noctuidae). PLoS One 2013; 8:e57213. [PMID: 23468937 PMCID: PMC3585292 DOI: 10.1371/journal.pone.0057213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 01/18/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Destruxin A (DA) is a microbial insecticide with potent bioactivity against Spodoptera litura larvae. A previous proteomic analysis of S. litura (SL-1) cells exposed to DA showed the abnormal expression of wing disc-like protein of S. litura (SLAWD). To further understand the effect of DA on SLAWD expression, a functional study was carried out. PRINCIPAL FINDINGS The SLAWD gene (SLAWD) was cloned and an open reading frame of 537 bp encoding a polypeptide of 178 amino acids was detected. Real-time fluorescence quantitative PCR (qRT-PCR) suggested that SLAWD is expressed in all developmental stages of S. litura, but expression was highest during the pupal and adult stages. RNAi knockdown of SLAWD expression in 6th-stage larvae was achieved by the microinjection of a specific double-stranded RNA (dsRNA). The results showed a significant decrease in SLAWD mRNA expression levels between the prepupal and adult stages. Interestingly, SLAWD expression was similarly down-regulated by treating 6th-stage larvae with DA. Growth- and development-related statistics confirmed the observed abnormalities in S. litura development after either RNAi or DA treatment. CONCLUSIONS SLAWD appears to have a biosynthetic function in the pupal and adult stages of S. litura. The toxic effect of DA on S. litura development is due the negative effect of DA on SLAWD gene expression.
Collapse
Affiliation(s)
- Xiang Meng
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- Guangdong Entomological Institute, Guangzhou, China
| | - Junjie Hu
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- College of Life Science, Guangzhou University, Guangzhou, China
| | - Xiaoxia Xu
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
| | - Zeqing Wang
- Guangdong New Scene Biological Engineering Co.,LTD, Guangdong, China
| | - Qiongbu Hu
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
| | - Fengliang Jin
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- * E-mail: (FJ); (SR)
| | - Shunxiang Ren
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University (SCAU), Guangzhou, China
- * E-mail: (FJ); (SR)
| |
Collapse
|
19
|
Halachmi N, Nachman A, Salzberg A. Visualization of proprioceptors in Drosophila larvae and pupae. J Vis Exp 2012:e3846. [PMID: 22733157 PMCID: PMC3471288 DOI: 10.3791/3846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Proprioception is the ability to sense the motion, or position, of body parts by responding to stimuli arising within the body. In fruitflies and other insects proprioception is provided by specialized sensory organs termed chordotonal organs (ChOs). Like many other organs in Drosophila, ChOs develop twice during the life cycle of the fly. First, the larval ChOs develop during embryogenesis. Then, the adult ChOs start to develop in the larval imaginal discs and continue to differentiate during metamorphosis. The development of larval ChOs during embryogenesis has been studied extensively. The centerpiece of each ChO is a sensory unit composed of a neuron and a scolopale cell. The sensory unit is stretched between two types of accessory cells that attach to the cuticle via specialized epidermal attachment cells. When a fly larva moves, the relative displacement of the epidermal attachment cells leads to stretching of the sensory unit and consequent opening of specific transient receptor potential vanilloid (TRPV) channels at the outer segment of the dendrite. The elicited signal is then transferred to the locomotor central pattern generator circuit in the central nervous system. Multiple ChOs have been described in the adult fly. These are located near the joints of the adult fly appendages (legs, wings and halters) and in the thorax and abdomen. In addition, several hundreds of ChOs collectively form the Johnston's organ in the adult antenna that transduce acoustic to mechanical energy. In contrast to the extensive knowledge about the development of ChOs in embryonic stages, very little is known about the morphology of these organs during larval stages. Moreover, with the exception of femoral ChOs and Johnston's organ, our knowledge about the development and structure of ChOs in the adult fly is very fragmentary. Here we describe a method for staining and visualizing ChOs in third instar larvae and pupae. This method can be applied together with genetic tools to better characterize the morphology and understand the development of the various ChOs in the fly.
Collapse
Affiliation(s)
- Naomi Halachmi
- Department of Genetics and Rappaport Institute for Research in Medical Sciences, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology
| | | | | |
Collapse
|
20
|
White A, Fearon A, Johnson CM. HLH-29 regulates ovulation in C. elegans by targeting genes in the inositol triphosphate signaling pathway. Biol Open 2012; 1:261-8. [PMID: 23213416 PMCID: PMC3507288 DOI: 10.1242/bio.2012046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The reproductive cycle in the nematode Caenorhabditis elegans depends in part on the ability of the mature oocyte to ovulate into the spermatheca, fuse with the sperm during fertilization, and then exit the spermatheca as a fertilized egg. This cycle requires the integration of signals between the germ cells and the somatic gonad and relies heavily on the precise control of inositol 1,4,5 triphosphate (IP3)levels. The HLH-29 protein, one of five Hairy/Enhancer of Split (HES) homologs in C. elegans, was previously shown to affect development of the somatic gonad. Here we show that HLH-29 expression in the adult spermatheca is strongly localized to the distal spermatheca valve and to the spermatheca-uterine valve, and that loss of hlh-29 activity interferes with oocyte entry into and egg exit from the spermatheca. We show that HLH-29 can regulate the transcriptional activity of the IP3 signaling pathway genes ppk-1, ipp-5, and plc-1 and provide evidence that hlh-29 acts in a genetic pathway with each of these genes. We propose that the HES-like protein HLH-29 acts in the spermatheca of larval and adult animals to effectively increase IP3 levels during the reproductive cycle.
Collapse
Affiliation(s)
- Ana White
- Department of Biology, College of Arts and Sciences, Georgia State University , Atlanta, GA 30303 , USA
| | | | | |
Collapse
|