1
|
Kin K, Forbes G, Cassidy A, Schaap P. Cell-type specific RNA-Seq reveals novel roles and regulatory programs for terminally differentiated Dictyostelium cells. BMC Genomics 2018; 19:764. [PMID: 30348074 PMCID: PMC6198379 DOI: 10.1186/s12864-018-5146-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major hallmark of multicellular evolution is increasing complexity by the evolution of new specialized cell types. During Dictyostelid evolution novel specialization occurred within taxon group 4. We here aim to retrace the nature and ancestry of the novel "cup" cells by comparing their transcriptome to that of other cell types. RESULTS RNA-Seq was performed on purified mature spore, stalk and cup cells and on vegetative amoebas. Clustering and phylogenetic analyses showed that cup cells were most similar to stalk cells, suggesting that they share a common ancestor. The affinity between cup and stalk cells was also evident from promoter-reporter studies of newly identified cell-type genes, which revealed late expression in cups of many stalk genes. However, GO enrichment analysis reveal the unexpected prominence of GTPase mediated signalling in cup cells, in contrast to enrichment of autophagy and cell wall synthesis related transcripts in stalk cells. Combining the cell type RNA-Seq data with developmental expression profiles revealed complex expression dynamics in each cell type as well as genes exclusively expressed during terminal differentiation. Most notable were nine related hssA-like genes that were highly and exclusively expressed in cup cells. CONCLUSIONS This study reveals the unique transcriptomes of the mature cup, stalk and spore cells of D. discoideum and provides insight into the ancestry of cup cells and roles in signalling that were not previously realized. The data presented in this study will serve as an important resource for future studies into the regulation and evolution of cell type specialization.
Collapse
Affiliation(s)
- Koryu Kin
- School of Life Sciences, University of Dundee, Angus, Dundee, DD15EH UK
| | - Gillian Forbes
- School of Life Sciences, University of Dundee, Angus, Dundee, DD15EH UK
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, University of Dundee, Angus, Dundee, DD19SY UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Angus, Dundee, DD15EH UK
| |
Collapse
|
2
|
Glutathione S-transferase 4 is a putative DIF-binding protein that regulates the size of fruiting bodies in Dictyostelium discoideum. Biochem Biophys Rep 2016; 8:219-226. [PMID: 28955959 PMCID: PMC5613964 DOI: 10.1016/j.bbrep.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/24/2023] Open
Abstract
In the development of the cellular slime mold Dictyostelium discoideum, two chlorinated compounds, the differentiation-inducing factors DIF-1 and DIF-2, play important roles in the regulation of both cell differentiation and chemotactic cell movement. However, the receptors of DIFs and the components of DIF signaling systems have not previously been elucidated. To identify the receptors for DIF-1 and DIF-2, we here performed DIF-conjugated affinity gel chromatography and liquid chromatography-tandem mass spectrometry and identified the glutathione S-transferase GST4 as a major DIF-binding protein. Knockout and overexpression mutants of gst4 (gst4- and gst4OE, respectively) formed fruiting bodies, but the fruiting bodies of gst4- cells were smaller than those of wild-type Ax2 cells, and those of gst4OE cells were larger than those of Ax2 cells. Both chemotaxis regulation and in vitro stalk cell formation by DIFs in the gst4 mutants were similar to those of Ax2 cells. These results suggest that GST4 is a DIF-binding protein that regulates the sizes of cell aggregates and fruiting bodies in D. discoideum.
Collapse
Key Words
- Cellular slime mold
- DIF-1
- DIF-1, differentiation-inducing factor 1, 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one
- DIF-1-NH2, amino derivative of DIF-1, 6-amino-1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one
- DIF-2
- DIF-2, differentiation-inducing factor-2, 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)pentan-1-one
- Dictyostelium discoideum
- GSH, glutathione
- GST, glutathione S-transferase
- Glutathione S-transferase
- LC/MS/MS, liquid chromatography–mass-mass spectrometry (liquid chromatography–tandem mass spectrometry)
- THPH, 1-(2,4,6-trihydroxyphenyl)hexan-1-one
Collapse
|
3
|
Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum. J Bacteriol 2016; 198:27-31. [PMID: 26013485 PMCID: PMC4686194 DOI: 10.1128/jb.00321-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In this review, we summarize the currently known mechanisms that control the major life cycle transitions of Dictyostelium and focus particularly on the role of c-di-GMP in stalk formation. Stalk cell differentiation has characteristics of autophagic cell death, a process that also occurs in higher eukaryotes. We discuss the respective roles of c-di-GMP and of another signal molecule, differentiation-inducing factor 1, in autophagic cell death in vitro and in stalk formation in vivo.
Collapse
|
4
|
Sugden C, Urbaniak MD, Araki T, Williams JG. The Dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes. Mol Biol Cell 2014; 26:805-20. [PMID: 25518940 PMCID: PMC4325849 DOI: 10.1091/mbc.e14-08-1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1-controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555.
Collapse
Affiliation(s)
- Chris Sugden
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Michael D Urbaniak
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Tsuyoshi Araki
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jeffrey G Williams
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
5
|
Mohri K, Hata T, Kikuchi H, Oshima Y, Urushihara H. Defects in the synthetic pathway prevent DIF-1 mediated stalk lineage specification cascade in the non-differentiating social amoeba, Acytostelium subglobosum. Biol Open 2014; 3:553-60. [PMID: 24876391 PMCID: PMC4058090 DOI: 10.1242/bio.20148359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Separation of somatic cells from germ-line cells is a crucial event for multicellular organisms, but how this step was achieved during evolution remains elusive. In Dictyostelium discoideum and many other dictyostelid species, solitary amoebae gather and form a multicellular fruiting body in which germ-line spores and somatic stalk cells differentiate, whereas in Acytostelium subglobosum, acellular stalks form and all aggregated amoebae become spores. In this study, because most D. discoideum genes known to be required for stalk cell differentiation have homologs in A. subglobosum, we inferred functional variations in these genes and examined conservation of the stalk cell specification cascade of D. discoideum mediated by the polyketide differentiation-inducing factor-1 (DIF-1) in A. subglobosum. Through heterologous expression of A. subglobosum orthologs of DIF-1 biosynthesis genes in D. discoideum, we confirmed that two of the three genes were functional equivalents, while DIF-methyltransferase (As-dmtA) involved at the final step of DIF-1 synthesis was not. In fact, DIF-1 activity was undetectable in A. subglobosum lysates and amoebae of this species were not responsive to DIF-1, suggesting a lack of DIF-1 production in this species. On the other hand, the molecular function of an A. subglobosum ortholog of DIF-1 responsive transcription factor was equivalent with that of D. discoideum and inhibition of polyketide synthesis caused developmental arrest in A. subglobosum, which could not be rescued by DIF-1 addition. These results suggest that non-DIF-1 polyketide cascades involving downstream transcription factors are required for fruiting body development of A. subglobosum.
Collapse
Affiliation(s)
- Kurato Mohri
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takashi Hata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan
| | - Hideko Urushihara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
6
|
Poloz Y, O'Day DH. Ca2+ signaling regulates ecmB expression, cell differentiation and slug regeneration in Dictyostelium. Differentiation 2012; 84:163-75. [PMID: 22595345 DOI: 10.1016/j.diff.2012.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/27/2012] [Accepted: 02/25/2012] [Indexed: 11/26/2022]
Abstract
Ca(2+) regulates cell differentiation and morphogenesis in a diversity of organisms and dysregulation of Ca(2+) signal transduction pathways leads to many cellular pathologies. In Dictyostelium Ca(2+) induces ecmB expression and stalk cell differentiation in vitro. Here we have analyzed the pattern of ecmB expression in intact and bisected slugs and the effect of agents that affect Ca(2+) levels or antagonize calmodulin (CaM) on this expression pattern. We have shown that Ca(2+) and CaM regulate ecmB expression and pstAB/pstB cell differentiation in vivo. Agents that increase intracellular Ca(2+) levels increased ecmB expression and/or pstAB and pstB cell differentiation, while agents that decrease intracellular Ca(2+) or antagonize CaM decreased it. In isolated slug tips agents that affect Ca(2+) levels and antagonize CaM had differential effect on ecmB expression and cell differentiation in the anterior versus posterior zones. Agents that increase intracellular Ca(2+) levels increased the number of ecmB expressing cells in the anterior region of slugs, while agents that decrease intracellular Ca(2+) levels or antagonize CaM activity increased the number of ecmB expressing cells in the posterior. We have also demonstrated that agents that affect Ca(2+) levels or antagonize CaM affect cells motility and regeneration of shape in isolated slug tips and backs and regeneration of tips in isolated slug backs. To our knowledge, this is the first study detailing the pattern of ecmB expression in regenerating slugs as well as the role of Ca(2+) and CaM in the regeneration process and ecmB expression.
Collapse
Affiliation(s)
- Yekaterina Poloz
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| | | |
Collapse
|
7
|
Poloz Y, O'Day DH. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling. Differentiation 2012; 83:185-99. [PMID: 22381626 DOI: 10.1016/j.diff.2011.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/05/2011] [Accepted: 12/23/2011] [Indexed: 11/26/2022]
Abstract
Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility.
Collapse
Affiliation(s)
- Yekaterina Poloz
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| | | |
Collapse
|
8
|
Transcriptional repression by a bZIP protein regulates Dictyostelium prespore differentiation. PLoS One 2012; 7:e29895. [PMID: 22253818 PMCID: PMC3253789 DOI: 10.1371/journal.pone.0029895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/08/2011] [Indexed: 11/29/2022] Open
Abstract
In response to the signaling polyketide DIF-1 DimB directly activates transcription of the ecmB gene in pstB cells; a subset of the prestalk cells that are the precursors of the basal disc. We show that the promoter of pspA, a prespore-specific gene, also contains a DimB binding site. Mutation of this site causes ectopic expression in the prestalk region and ChIP analysis shows that DIF-1 induces binding of DimB to the pspA promoter. DIF-1 represses pspA gene expression in a suspension cell assay but this repression is abrogated in a dimB null strain. These results suggest a coupled control mechanism, whereby the same DIF-DimB signaling pathway that directly activates ecmB gene expression directly represses pspA gene expression.
Collapse
|
9
|
SENOO HIROSHI, WANG HONGYU, ARAKI TSUYOSHI, WILLIAMS JEFFREYG, FUKUZAWA MASASHI. An orthologue of the Myelin-gene Regulatory Transcription Factor regulates Dictyostelium prestalk differentiation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:325-32. [PMID: 22811266 PMCID: PMC3586673 DOI: 10.1387/ijdb.120030jw] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The prestalk region of the Dictyostelium slug is comprised of an anterior population of pstA cells and a posterior population of pstO cells. They are distinguished by their ability to utilize different parts of the promoter of the ecmA gene. We identify, by mutational analysis and DNA transformation, CA-rich sequence elements within the ecmA promoter that are essential for pstA-specific expression and sufficient to direct pstA-specific expression when multimerised. The CA-rich region was used in affinity chromatography with nuclear extracts and bound proteins were identified by mass spectrometry. The CA-rich elements purify MrfA, a protein with extensive sequence similarity to animal Myelin-gene Regulatory Factor (MRF)-like proteins. The MRF-like proteins and MrfA also display more spatially limited but significant sequence similarity with the DNA binding domain of the yeast Ndt80 sporulation-specific transcription factor. Furthermore, the ecmA CA-rich elements show sequence similarity to the core consensus Ndt80 binding site (the MSE) and point mutation of highly conserved arginine residues in MrfA, that in Ndt80 make critical contacts with the MSE, ablate binding of MrfA to its sites within the ecmA promoter. MrfA null strains are delayed in multicellular development and highly defective in pstA-specific gene expression. These results provide a first insight into the intracellular signaling pathway that directs pstA differentiation and identify a non-metazoan orthologue of a family of molecularly uncharacterised transcription factors.
Collapse
Affiliation(s)
- HIROSHI SENOO
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - HONG-YU WANG
- College of Life Sciences, University of Dundee, UK
| | | | | | - MASASHI FUKUZAWA
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| |
Collapse
|