1
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Vanni V, Salonna M, Gasparini F, Martini M, Anselmi C, Gissi C, Manni L. Yamanaka Factors in the Budding Tunicate Botryllus schlosseri Show a Shared Spatio-Temporal Expression Pattern in Chordates. Front Cell Dev Biol 2022; 10:782722. [PMID: 35342743 PMCID: PMC8948423 DOI: 10.3389/fcell.2022.782722] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/09/2022] [Indexed: 01/22/2023] Open
Abstract
In vertebrates, the four transcription factors Sox2, c-Myc, Pou5f1 and Klf4 are involved in the differentiation of several tissues during vertebrate embryogenesis; moreover, they are normally co-expressed in embryonic stem cells and play roles in pluripotency, self-renewal, and maintenance of the undifferentiated state in adult cells. The in vitro forced co-expression of these factors, named Yamanaka factors (YFs), induces pluripotency in human or mouse fibroblasts. Botryllus schlosseri is a colonial tunicate undergoing continuous stem cell-mediated asexual development, providing a valuable model system for the study of pluripotency in the closest living relatives of vertebrates. In this study, we identified B. schlosseri orthologs of human Sox2 and c-Myc genes, as well as the closest homologs of the vertebrate-specific Pou5f1 gene, through an in-depth evolutionary analysis of the YF gene families in tunicates and other deuterostomes. Then, we studied the expression of these genes during the asexual cycle of B. schlosseri using in situ hybridization in order to investigate their possible involvement in tissue differentiation and in pluripotency maintenance. Our results show a shared spatio-temporal expression pattern consistent with the reported functions of these genes in invertebrate and vertebrate embryogenesis. Moreover, Myc, SoxB1 and Pou3 were expressed in candidate stem cells residing in their niches, while Pou2 was found expressed exclusively in the immature previtellogenic oocytes, both in gonads and circulating in the colonial vascular system. Our data suggest that Myc, SoxB1 and Pou3 may be individually involved in the differentiation of the same territories seen in other chordates, and that, together, they may play a role in stemness even in this colonial ascidian.
Collapse
Affiliation(s)
- Virginia Vanni
- Department of Biology, University of Padova, Padova, Italy
| | - Marika Salonna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | | | | | - Chiara Anselmi
- Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Carmela Gissi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.,IBIOM, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale Delle Ricerche, Bari, Italy.,CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze Del Mare, Roma, Italy
| | - Lucia Manni
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Su YH. Dorsal-ventral axis formation in sea urchin embryos. Curr Top Dev Biol 2022; 146:183-210. [PMID: 35152983 DOI: 10.1016/bs.ctdb.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most sea urchin species produce planktonic feeding larvae with distinct dorsal-ventral polarity. Such morphological indicators of polarity arise after gastrulation, when several morphogenesis and cell differentiation events occur differentially along the dorsal-ventral axis. For instance, the gut bends toward the ventral side where the mouth will form, skeletogenesis occurs initially near the ventral side with the forming skeleton extending dorsally, and pigment cells differentiate and embed in the dorsal ectoderm. The patterning mechanisms and gene regulatory networks underlying these events have been extensively studied. Two opposing TGF-β signaling pathways, Nodal and BMP, play key roles in all three germ layers to respectively pattern the sea urchin ventral and dorsal sides. In this chapter, I describe our current understanding of sea urchin dorsal-ventral patterning mechanisms. Additionally, differences in the patterning mechanisms observed in lecithotrophic sea urchins (nonfeeding larvae) and in cidaroid sea urchins are also discussed, along with evolutionary insights gained from comparative analyses.
Collapse
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Massri AJ, Greenstreet L, Afanassiev A, Berrio A, Wray GA, Schiebinger G, McClay DR. Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo. Development 2021; 148:271986. [PMID: 34463740 DOI: 10.1242/dev.198614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Using scRNA-seq coupled with computational approaches, we studied transcriptional changes in cell states of sea urchin embryos during development to the larval stage. Eighteen closely spaced time points were taken during the first 24 h of development of Lytechinus variegatus (Lv). Developmental trajectories were constructed using Waddington-OT, a computational approach to 'stitch' together developmental time points. Skeletogenic and primordial germ cell trajectories diverged early in cleavage. Ectodermal progenitors were distinct from other lineages by the 6th cleavage, although a small percentage of ectoderm cells briefly co-expressed endoderm markers that indicated an early ecto-endoderm cell state, likely in cells originating from the equatorial region of the egg. Endomesoderm cells also originated at the 6th cleavage and this state persisted for more than two cleavages, then diverged into distinct endoderm and mesoderm fates asynchronously, with some cells retaining an intermediate specification status until gastrulation. Seventy-nine out of 80 genes (99%) examined, and included in published developmental gene regulatory networks (dGRNs), are present in the Lv-scRNA-seq dataset and are expressed in the correct lineages in which the dGRN circuits operate.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | | | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Dev Biol 2021; 475:131-144. [PMID: 33484706 DOI: 10.1016/j.ydbio.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Coup-TF, a member of the nuclear receptor super-family, is present in the pool of maternal mRNAs and proteins in the sea urchin egg. The presence of this protein seems to be essential for the execution of the early developmental program, leading to all three embryonic layers. Our results demonstrate that Pl-Coup-TF morphants, i.e. Pl-Coup-TF morpholino knockdown embryos, resemble blastulae that lack archenteron at 24 hpf (hours post fertilization), a stage at which normal embryos reach the end of gastrulation in Paracentrotus lividus. At 48 hpf, when normal embryos reach the pluteus larva stage, the morphants are seemingly underdeveloped and lack the characteristic skeletal rods. Nevertheless, the morphant embryos express vegetal endomesodermal marker genes, such as Pl-Blimp1, Pl-Endo16, Pl-Alx1 and Pl-Tbr as judged by in situ hybridization experiments. The anterior neuroectoderm genes, Pl-FoxQ2, Pl-Six3 and Pl-Pax6, are also expressed in the morphant embryos, but Pl-Hbn and Pl-Fez mRNAs, which encode proteins significant for the differentiation of serotonergic neurons, are not detected. Consequently, Pl-Coup-TF morphants at 48 hpf lack serotonergic neurons, whereas normal 48 hpf plutei exhibit the formation of two bilateral pairs of such neurons in the apical organ. Furthermore, genes indicative of the ciliary band formation, Pl-Hnf6, Pl-Dri, Pl-FoxG and Pl-Otx, are not expressed in Pl-Coup-TF morphants, suggesting the disruption of this neurogenic territory as well. In addition, the Pl-SynB gene, a marker of differentiated neurons, is silent leading to the hypothesis that Pl-Coup-TF morphants might lack all types of neurons. On the contrary, the genes expressing signaling molecules, which establish the ventral/dorsal axis, Pl-Nodal and Pl-Lefty show the characteristic ventral lateral expression pattern, Pl-Bmp2/4, which activates the dorsal ectoderm GRN is down-regulated and Pl-Chordin is aberrantly over-expressed in the entire ectoderm. The identity of ectodermal cells in Pl-Coup-TF morphant embryos, was probed for expression of the ventral marker Pl-Gsc which was over-expressed and dorsal markers, Pl-IrxA and Pl-Hox7, which were silent. Therefore, we propose that maternal Pl-Coup-TF is essential for correct dissemination of the early embryonic signaling along both animal/vegetal and ventral/dorsal axes. Limiting Pl-Coup-TF's quantity, results in an embryo without digestive and nervous systems, skeleton and ciliary band that cannot survive past the initial 48 h of development.
Collapse
Affiliation(s)
- Ioannis Tsironis
- Department of Biology, University of Patras, Patras, 26500, Greece
| | - Periklis Paganos
- Department of Biology, University of Patras, Patras, 26500, Greece; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Georgia Gouvi
- Department of Biology, University of Patras, Patras, 26500, Greece
| | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
6
|
Floc'hlay S, Molina MD, Hernandez C, Haillot E, Thomas-Chollier M, Lepage T, Thieffry D. Deciphering and modelling the TGF-β signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo. Development 2021; 148:dev.189944. [PMID: 33298464 DOI: 10.1242/dev.189944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
During sea urchin development, secretion of Nodal and BMP2/4 ligands and their antagonists Lefty and Chordin from a ventral organiser region specifies the ventral and dorsal territories. This process relies on a complex interplay between the Nodal and BMP pathways through numerous regulatory circuits. To decipher the interplay between these pathways, we used a combination of treatments with recombinant Nodal and BMP2/4 proteins and a computational modelling approach. We assembled a logical model focusing on cell responses to signalling inputs along the dorsal-ventral axis, which was extended to cover ligand diffusion and enable multicellular simulations. Our model simulations accurately recapitulate gene expression in wild-type embryos, accounting for the specification of ventral ectoderm, ciliary band and dorsal ectoderm. Our model simulations further recapitulate various morphant phenotypes, reveal a dominance of the BMP pathway over the Nodal pathway and stress the crucial impact of the rate of Smad activation in dorsal-ventral patterning. These results emphasise the key role of the mutual antagonism between the Nodal and BMP2/4 pathways in driving early dorsal-ventral patterning of the sea urchin embryo.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Céline Hernandez
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emmanuel Haillot
- Institut Biologie Valrose, Université Côte d'Azur, 06108 Nice, France
| | - Morgane Thomas-Chollier
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| | - Thierry Lepage
- Institut Biologie Valrose, Université Côte d'Azur, 06108 Nice, France
| | - Denis Thieffry
- Department of Biology, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
7
|
Wang L, Israel JW, Edgar A, Raff RA, Raff EC, Byrne M, Wray GA. Genetic basis for divergence in developmental gene expression in two closely related sea urchins. Nat Ecol Evol 2020; 4:831-840. [PMID: 32284581 DOI: 10.1038/s41559-020-1165-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
The genetic basis for divergence in developmental gene expression among species is poorly understood, despite growing evidence that such changes underlie many interesting traits. Here we quantify transcription in hybrids of Heliocidaris tuberculata and Heliocidaris erythrogramma, two closely related sea urchins with highly divergent developmental gene expression and life histories. We find that most expression differences between species result from genetic influences that affect one stage of development, indicating limited pleiotropic consequences for most mutations that contribute to divergence in gene expression. Activation of zygotic transcription is broadly delayed in H. erythrogramma, the species with the derived life history, despite its overall faster premetamorphic development. Altered expression of several terminal differentiation genes associated with the derived larval morphology of H. erythrogramma is based largely on differences in the expression or function of their upstream regulators, providing insights into the genetic basis for the evolution of key life history traits.
Collapse
Affiliation(s)
- Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Allison Edgar
- Department of Biology, Duke University, Durham, NC, USA
| | - Rudolf A Raff
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Maria Byrne
- School of Medical Science, The University of Sydney, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Maternal factors regulating symmetry breaking and dorsal–ventral axis formation in the sea urchin embryo. Curr Top Dev Biol 2020; 140:283-316. [DOI: 10.1016/bs.ctdb.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Yamazaki A, Yamamoto A, Yaguchi J, Yaguchi S. cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos. Genesis 2019; 57:e23302. [PMID: 31025827 DOI: 10.1002/dvg.23302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/31/2023]
Abstract
The specification of anterior neuroectoderm is controlled by a highly conserved molecular mechanism in bilaterians. A forkhead family gene, foxQ2, is known to be one of the pivotal regulators, which is zygotically expressed in this region during embryogenesis of a broad range of bilaterians. However, what controls the expression of this essential factor has remained unclear to date. To reveal the regulatory mechanism of foxQ2, we performed cis-regulatory analysis of two foxQ2 genes, foxQ2a and foxQ2b, in a sea urchin Hemicentrotus pulcherrimus. In sea urchin embryos, foxQ2 is initially expressed in the entire animal hemisphere and subsequently shows narrower expression restricted to the anterior pole region. In this study, as a first step to understand the foxQ2 regulation, we focused on the later restricted expression and analyzed the upstream cis-regulatory sequences of foxQ2a and foxQ2b by using the constructs fused to short half-life green fluorescent protein. Based on deletion and mutation analyses of both foxQ2, we identified each of the five regulatory sequences, which were 4-9 bp long. Neither of the regulatory sequences contains any motifs for ectopic activation or spatial repression, suggesting that later mRNA localization is regulated in situ. We also suggest that the three amino acid loop extension-class homeobox gene Meis is involved in the maintenance of foxQ2b, the expression of which is dominant during embryogenesis.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Akane Yamamoto
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
10
|
Molina MD, Gache C, Lepage T. Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods Cell Biol 2019; 151:239-282. [PMID: 30948011 DOI: 10.1016/bs.mcb.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways. We describe specific examples of the use of overexpression of mRNA to analyze gene function, mention the benefits and current limitations of the technique and emphasize the importance of using different controls to assess the specificity of the effects observed. Finally, this chapter details the different steps, vectors and protocols for in vitro production of mRNA and phenotypic analysis.
Collapse
Affiliation(s)
| | - Christian Gache
- Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche sur Mer, UMR7009 CNRS, Paris, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
11
|
Molina MD, Quirin M, Haillot E, De Crozé N, Range R, Rouel M, Jimenez F, Amrouche R, Chessel A, Lepage T. MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genet 2018; 14:e1007621. [PMID: 30222786 PMCID: PMC6160229 DOI: 10.1371/journal.pgen.1007621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood. We report that in Paracentrotus lividus, the activity of the maternally expressed ETS-domain transcription factor Yan/Tel is essential for the spatial restriction of nodal. Inhibiting translation of maternal yan/tel mRNA disrupted dorsal-ventral patterning in all germ layers by causing a massive ectopic expression of nodal starting from cleavage stages, mimicking the phenotype caused by inactivation of the maternal Nodal antagonist Panda. We show that like in the fly or in vertebrates, the activity of sea urchin Yan/Tel is regulated by phosphorylation by MAP kinases. However, unlike in the fly or in vertebrates, phosphorylation by GSK3 plays a central role in the regulation Yan/Tel stability in the sea urchin. We show that GSK3 phosphorylates Yan/Tel in vitro at two different sites including a β-TRCP ubiquitin ligase degradation motif and a C-terminal Ser/Thr rich cluster and that phosphorylation of Yan/Tel by GSK3 triggers its degradation by a β-TRCP/proteasome pathway. Finally, we show that, Yan is epistatic to Panda and that the activity of Yan/Tel is required downstream of Panda to restrict nodal expression. Our results identify Yan/Tel as a central regulator of the spatial expression of nodal in Paracentrotus lividus and uncover a key interaction between the gene regulatory networks responsible for patterning the embryo along the dorsal-ventral and animal-vegetal axes. Specification of the embryonic axes is an essential step during early development of metazoa. In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatial restriction of the expression of the TGF-ß family member Nodal in ventral cells, a process that requires the activity of the maternal determinant Panda. How the spatially restricted expression of nodal is established downstream of Panda is not well understood. We have discovered that, in the Mediterranean sea urchin Paracentrotus lividus, the spatial restriction of nodal on the ventral side of the embryo requires the inhibitory activity of a transcriptional repressor named Yan/Tel. This finding suggests a molecular mechanism for the control of nodal expression by the release of a repression. We found that this release requires the activity of two families of kinases that we identified as the MAP kinases and GSK3, a kinase which, intriguingly, was previously known as a key regulator of patterning along the animal-vegetal axis. We discovered that phosphorylation by MAPK and GSK3 triggers degradation of Yan/Tel by a β-TRCP proteasome pathway. Finally, we find that Yan/Tel likely acts downstream of Panda in the hierarchy of genes required for nodal restriction. Our study therefore identifies Yan/Tel as a new essential regulator of nodal expression downstream of Panda and identifies a novel key interaction between the gene regulatory networks responsible for patterning along the primary and secondary axis of polarity.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Magali Quirin
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Emmanuel Haillot
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Noémie De Crozé
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Ryan Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Mathieu Rouel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Felipe Jimenez
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Radja Amrouche
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Aline Chessel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Thierry Lepage
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
- * E-mail:
| |
Collapse
|
12
|
Chassé H, Aubert J, Boulben S, Le Corguillé G, Corre E, Cormier P, Morales J. Translatome analysis at the egg-to-embryo transition in sea urchin. Nucleic Acids Res 2018; 46:4607-4621. [PMID: 29660001 PMCID: PMC5961321 DOI: 10.1093/nar/gky258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis.
Collapse
Affiliation(s)
- Héloïse Chassé
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julie Aubert
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Sandrine Boulben
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Patrick Cormier
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julia Morales
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| |
Collapse
|
13
|
Montague TG, Schier AF. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife 2017; 6:28183. [PMID: 29140251 PMCID: PMC5745085 DOI: 10.7554/elife.28183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/03/2022] Open
Abstract
Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta-related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. All animals begin life as just one cell – a fertilized egg. In order to make a recognizable adult, each embryo needs to make the three types of tissue that will eventually form all of the organs: endoderm, which will form the internal organs; mesoderm, which will form the muscle and bones; and ectoderm, which will generate the skin and nervous system. All vertebrates – animals with backbones like fish and humans – use the so-called Nodal signaling pathway to make the endoderm and mesoderm. Nodal is a signaling molecule that binds to receptors on the surface of cells. If Nodal binds to a receptor on a cell, it instructs that cell to become endoderm or mesoderm. As such, Nodal is critical for vertebrate life. However, there has been a 30-year debate in the field of developmental biology about whether a protein called Vg1, which has a similar molecular structure as Nodal, plays a role in the early development of vertebrates. Zebrafish are often used to study animal development, and Montague and Schier decided to test whether these fish need the gene for Vg1 (also known as Gdf3) by deleting it using a genome editing technique called CRISPR/Cas9. It turns out that female zebrafish can survive without this gene. Yet, when the offspring of these females do not inherit the instructions to make Vg1 from their mothers, they fail to form the endoderm and mesoderm. This means that the embryos do not have hearts, blood or other internal organs, and they die within three days. Two other groups of researchers have independently reported similar results. The findings reveal that Vg1 is critical for the Nodal signaling pathway to work in zebrafish. Montague and Schier then showed that, in this pathway, Nodal does not activate its receptors on its own. Instead, Nodal must interact with Vg1, and it is this Nodal-Vg1 complex that activates receptors, and instructs cells to become endoderm and mesoderm. Scientists currently use the Nodal signaling pathway to induce human embryonic stem cells growing in the laboratory to become mesoderm and endoderm. As such, these new findings could ultimately help researchers to grow tissues and organs for human patients.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
14
|
Molina MD, Quirin M, Haillot E, Jimenez F, Chessel A, Lepage T. p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation. Development 2017; 144:2270-2281. [PMID: 28507001 DOI: 10.1242/dev.152330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Dorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of nodal expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis. Instead, we discovered that p38 inhibitors strongly disrupt specification of all germ layers by blocking signalling from the Nodal receptor and by interfering with the ERK pathway. Strikingly, while expression of a mutant p38 that is resistant to SB203580 did not rescue dorsal-ventral axis formation or skeletogenesis in embryos treated with this inhibitor, expression of mutant Nodal receptors that are resistant to SB203580 fully restored nodal expression in SB203580-treated embryos. Taken together, these results establish that p38 activity is not required for dorsal-ventral axis formation through nodal expression nor for skeletogenesis. Our results prompt a re-evaluation of the conclusions of several recent studies that linked p38 activity to dorsal-ventral axis formation and to patterning of the skeleton.
Collapse
Affiliation(s)
| | - Magali Quirin
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Emmanuel Haillot
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Felipe Jimenez
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Aline Chessel
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| |
Collapse
|
15
|
Simakov O, Kawashima T. Independent evolution of genomic characters during major metazoan transitions. Dev Biol 2016; 427:179-192. [PMID: 27890449 DOI: 10.1016/j.ydbio.2016.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies.
Collapse
Affiliation(s)
- Oleg Simakov
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| | | |
Collapse
|
16
|
Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, Yue JX, Chen YC, Freeman RM, Sasaki A, Hikosaka-Katayama T, Sato A, Fujie M, Baughman KW, Levine J, Gonzalez P, Cameron C, Fritzenwanker JH, Pani AM, Goto H, Kanda M, Arakaki N, Yamasaki S, Qu J, Cree A, Ding Y, Dinh HH, Dugan S, Holder M, Jhangiani SN, Kovar CL, Lee SL, Lewis LR, Morton D, Nazareth LV, Okwuonu G, Santibanez J, Chen R, Richards S, Muzny DM, Gillis A, Peshkin L, Wu M, Humphreys T, Su YH, Putnam NH, Schmutz J, Fujiyama A, Yu JK, Tagawa K, Worley KC, Gibbs RA, Kirschner MW, Lowe CJ, Satoh N, Rokhsar DS, Gerhart J. Hemichordate genomes and deuterostome origins. Nature 2015; 527:459-65. [PMID: 26580012 PMCID: PMC4729200 DOI: 10.1038/nature16150] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.
Collapse
Affiliation(s)
- Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular Evolution, Centre for Organismal Studies, University of Heidelberg, 69115 Heidelberg, Germany
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | | | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Fuki Gyoja
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jia-Xing Yue
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Akane Sasaki
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Tomoe Hikosaka-Katayama
- Natural Science Center for Basic Research and Development, Gene Science Division, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Atsuko Sato
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kenneth W Baughman
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Judith Levine
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Paul Gonzalez
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Christopher Cameron
- Départment de sciences biologiques, University of Montreal, Quebec H3C 3J7, Canada
| | - Jens H Fritzenwanker
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Ariel M Pani
- University of North Caroline at Chapel Hill, North Carolina 27599, USA
| | - Hiroki Goto
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Yan Ding
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Huyen H Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna Morton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lynne V Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Jireh Santibanez
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Wu
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Tom Humphreys
- Institute for Biogenesis Research, University of Hawaii, Hawaii 96822, USA
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nicholas H Putnam
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Asao Fujiyama
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kunifumi Tagawa
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| |
Collapse
|
17
|
Symmetry Breaking and Establishment of Dorsal/Ventral Polarity in the Early Sea Urchin Embryo. Symmetry (Basel) 2015. [DOI: 10.3390/sym7041721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Mashanov VS, Zueva OR, García-Arrarás JE. Expression of pluripotency factors in echinoderm regeneration. Cell Tissue Res 2014; 359:521-536. [PMID: 25468557 DOI: 10.1007/s00441-014-2040-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
Cell dedifferentiation is an integral component of post-traumatic regeneration in echinoderms. As dedifferentiated cells become multipotent, we asked if this spontaneous broadening of developmental potential is associated with the action of the same pluripotency factors (known as Yamanaka factors) that were used to induce pluripotency in specialized mammalian cells. In this study, we investigate the expression of orthologs of the four Yamanaka factors in regeneration of two different organs, the radial nerve cord and the digestive tube, in the sea cucumber Holothuria glaberrima. All four pluripotency factors are expressed in uninjured animals, although their expression domains do not always overlap. In regeneration, the expression levels of the four genes were not regulated in a coordinated way, but instead showed different dynamics for individual genes and also were different between the radial nerve and the gut. SoxB1, the ortholog of the mammalian Sox2, was drastically downregulated in the regenerating intestine, suggesting that this factor is not required for dedifferentiation/regeneration in this organ. On the other hand, during the early post-injury stage, Myc, the sea cucumber ortholog of c-Myc, was significantly upregulated in both the intestine and the radial nerve cord and is therefore hypothesized to play a central role in dedifferentiation/regeneration of various tissue types.
Collapse
Affiliation(s)
- Vladimir S Mashanov
- Department of Biology, University of Puerto Rico, PO Box 70377, San Juan, PR, 00936-8377, USA.
| | - Olga R Zueva
- Department of Biology, University of Puerto Rico, PO Box 70377, San Juan, PR, 00936-8377, USA
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, PO Box 70377, San Juan, PR, 00936-8377, USA
| |
Collapse
|
19
|
Cavalieri V, Spinelli G. Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo. eLife 2014; 3:e04664. [PMID: 25457050 PMCID: PMC4273433 DOI: 10.7554/elife.04664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022] Open
Abstract
Dorsal/ventral (DV) patterning of the sea urchin embryo relies on a ventrally-localized organizer expressing Nodal, a pivotal regulator of the DV gene regulatory network. However, the inceptive mechanisms imposing the symmetry-breaking are incompletely understood. In Paracentrotus lividus, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, spatially facing and preceding the onset of nodal transcription. We report that Hbox12 misexpression provokes DV abnormalities, attenuating nodal and nodal-dependent transcription. Reciprocally, impairing hbox12 function disrupts DV polarity by allowing ectopic expression of nodal. Clonal loss-of-function, inflicted by blastomere transplantation or gene-transfer assays, highlights that DV polarization requires Hbox12 action in dorsal cells. Remarkably, the localized knock-down of nodal restores DV polarity of embryos lacking hbox12 function. Finally, we show that hbox12 is a dorsal-specific negative modulator of the p38-MAPK activity, which is required for nodal expression. Altogether, our results suggest that Hbox12 function is essential for proper positioning of the DV organizer.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Mashanov VS, Zueva OR, García-Arrarás JE. Transcriptomic changes during regeneration of the central nervous system in an echinoderm. BMC Genomics 2014; 15:357. [PMID: 24886271 PMCID: PMC4229883 DOI: 10.1186/1471-2164-15-357] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Echinoderms are emerging as important models in regenerative biology. Significant amount of data are available on cellular mechanisms of post-traumatic repair in these animals, whereas studies of gene expression are rare. In this study, we employ high-throughput sequencing to analyze the transcriptome of the normal and regenerating radial nerve cord (a homolog of the chordate neural tube), in the sea cucumber Holothuria glaberrima. RESULTS Our de novo assembly yielded 70,173 contigs, of which 24,324 showed significant similarity to known protein-coding sequences. Expression profiling revealed large-scale changes in gene expression (4,023 and 3,257 up-regulated and down-regulated transcripts, respectively) associated with regeneration. Functional analysis of sets of differentially expressed genes suggested that among the most extensively over-represented pathways were those involved in the extracellular matrix (ECM) remodeling and ECM-cell interactions, indicating a key role of the ECM in regeneration. We also searched the sea cucumber transcriptome for homologs of factors known to be involved in acquisition and/or control of pluripotency. We identified eleven genes that were expressed both in the normal and regenerating tissues. Of these, only Myc was present at significantly higher levels in regeneration, whereas the expression of Bmi-1 was significantly reduced. We also sought to get insight into which transcription factors may operate at the top of the regulatory hierarchy to control gene expression in regeneration. Our analysis yielded eleven putative transcription factors, which constitute good candidates for further functional studies. The identified candidate transcription factors included not only known regeneration-related genes, but also factors not previously implicated as regulators of post-traumatic tissue regrowth. Functional annotation also suggested that one of the possible adaptations contributing to fast and efficient neural regeneration in echinoderms may be related to suppression of excitotoxicity. CONCLUSIONS Our transcriptomic analysis corroborates existing data on cellular mechanisms implicated in regeneration in sea cucumbers. More importantly, however, it also illuminates new aspects of echinoderm regeneration, which have been scarcely studied or overlooked altogether. The most significant outcome of the present work is that it lays out a roadmap for future studies of regulatory mechanisms by providing a list of key candidate genes for functional analysis.
Collapse
Affiliation(s)
- Vladimir S Mashanov
- Department of Biology, University of Puerto Rico, PO Box 70377, PR 00936-8377 San Juan, USA
| | - Olga R Zueva
- Department of Biology, University of Puerto Rico, PO Box 70377, PR 00936-8377 San Juan, USA
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, PO Box 70377, PR 00936-8377 San Juan, USA
| |
Collapse
|
21
|
Coffman JA, Wessels A, DeSchiffart C, Rydlizky K. Oral-aboral axis specification in the sea urchin embryo, IV: hypoxia radializes embryos by preventing the initial spatialization of nodal activity. Dev Biol 2013; 386:302-7. [PMID: 24384388 DOI: 10.1016/j.ydbio.2013.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
The oral-aboral axis of the sea urchin embryo is specified conditionally via a regulated feedback circuit involving the signaling gene nodal and its antagonist lefty. In normal development nodal activity becomes localized to the prospective oral side of the blastula stage embryo, a process that requires lefty. In embryos of Strongylocentrotus purpuratus, a redox gradient established by asymmetrically distributed mitochondria provides an initial spatial input that positions the localized domain of nodal expression. This expression is perturbed by hypoxia, leading to development of radialized embryos lacking an oral-aboral axis. Here we show that this radialization is not caused by a failure to express nodal, but rather by a failure to localize nodal activity to one side of the embryo. This occurs even when embryos are removed from hypoxia at late cleavage stage when nodal is first expressed, indicating that the effect involves the initiation phase of nodal activity, rather than its positive feedback-driven amplification and maintenance. Quantitative fluorescence microscopy of MitoTracker Orange-labeled embryos expressing nodal-GFP reporter gene revealed that hypoxia abolishes the spatial correlation between mitochondrial distribution and nodal expression, suggesting that hypoxia eliminates the initial spatial bias in nodal activity normally established by the redox gradient. We propose that absent this bias, the initiation phase of nodal expression is spatially uniform, such that the ensuing Nodal-mediated community effect is not localized, and hence refractory to Lefty-mediated enforcement of localization.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA.
| | - Abigail Wessels
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA
| | | | - Katarina Rydlizky
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA
| |
Collapse
|
22
|
Nodal: master and commander of the dorsal–ventral and left–right axes in the sea urchin embryo. Curr Opin Genet Dev 2013; 23:445-53. [DOI: 10.1016/j.gde.2013.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/14/2023]
|
23
|
Qian X, Zhao FQ. Interactions of the ubiquitous octamer-binding transcription factor-1 with both the signal transducer and activator of transcription 5 and the glucocorticoid receptor mediate prolactin and glucocorticoid-induced β-casein gene expression in mammary epithelial cells. Int J Biochem Cell Biol 2013; 45:724-35. [PMID: 23313770 DOI: 10.1016/j.biocel.2013.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/27/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Regulation of milk protein gene expression by lactogenic hormones (prolactin and glucocorticoids) provides an attractive model for studying the mechanisms by which protein and steroid hormones synergistically regulate gene expression. β-Casein is one of the major milk proteins and its expression in mammary epithelial cells is stimulated by lactogenic hormones. The signal transducer and activator of transcription 5 and glucocorticoid receptor are essential downstream mediators of prolactin and glucocorticoid signaling, respectively. Previous studies have shown that mutating the octamer-binding site of the β-casein gene proximal promoter dramatically reduces the hormonal induction of the promoter activity. However, little is known about the underlying molecular mechanisms. In this report, we show that lactogenic hormones rapidly induce the binding of octamer-binding transcription factor-1 to the β-casein promoter and this induction is not mediated by either increasing the expression of octamer-binding transcription factor-1 or inducing its translocation to the nucleus. Rather, lactogenic hormones induce physical interactions between the octamer-binding transcription factor-1, signal transducer and activator of transcription 5, and glucocorticoid receptor to form a ternary complex, and these interactions enhance or stabilize the binding of these transcription factors to the promoter. Abolishing these interactions significantly reduces the hormonal induction of β-casein gene transcription. Thus, our study indicates that octamer-binding transcription factor-1 may serve as a master regulator that facilitates the DNA binding of both signal transducer and activator of transcription 5 and glucocorticoid receptor in hormone-induced β-casein expression, and defines a novel mechanism of regulation of tissue-specific gene expression by the ubiquitous octamer-binding transcription factor-1.
Collapse
Affiliation(s)
- Xi Qian
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
24
|
Ben-Tabou de-Leon S, Su YH, Lin KT, Li E, Davidson EH. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol 2012; 374:245-54. [PMID: 23211652 DOI: 10.1016/j.ydbio.2012.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The regulation of oral-aboral ectoderm specification in the sea urchin embryo has been extensively studied in recent years. The oral-aboral polarity is initially imposed downstream of a redox gradient induced by asymmetric maternal distribution of mitochondria. Two TGF-β signaling pathways, Nodal and BMP, are then respectively utilized in the generation of oral and aboral regulatory states. However, a causal understanding of the regulation of aboral ectoderm specification has been lacking. In this work control of aboral ectoderm regulatory state specification was revealed by combining detailed regulatory gene expression studies, perturbation and cis-regulatory analyses. Our analysis illuminates a dynamic system where different factors dominate at different developmental times. We found that the initial activation of aboral genes depends directly on the redox sensitive transcription factor, hypoxia inducible factor 1α (HIF-1α). Two BMP ligands, BMP2/4 and BMP5/8, then significantly enhance aboral regulatory gene transcription. Ultimately, encoded feedback wiring lockdown the aboral ectoderm regulatory state. Our study elucidates the different regulatory mechanisms that sequentially dominate the spatial localization of aboral regulatory states.
Collapse
Affiliation(s)
- Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | |
Collapse
|