1
|
Sun X, Zhang X, Yang L, Dong B. A microRNA Cluster-Lefty Pathway is Required for Cellulose Synthesis During Ascidian Larval Metamorphosis. Front Cell Dev Biol 2022; 10:835906. [PMID: 35372357 PMCID: PMC8965075 DOI: 10.3389/fcell.2022.835906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Synthesis of cellulose and formation of tunic structure are unique traits in the tunicate animal group. However, the regulatory mechanism of tunic formation remains obscure. Here, we identified a novel microRNA cluster of three microRNAs, including miR4018a, miR4000f, and miR4018b in Ciona savignyi. In situ hybridization and promoter assays showed that miR4018a/4000f/4018b cluster was expressed in the mesenchymal cells in the larval trunk, and the expression levels were downregulated during the later tailbud stage and larval metamorphosis. Importantly, overexpression of miR4018a/4000f/4018b cluster in mesenchymal cells abolished the cellulose synthesis in Ciona larvae and caused the loss of tunic cells in metamorphic larvae, indicating the regulatory roles of miR4018a/4000f/4018b cluster in cellulose synthesis and mesenchymal cell differentiation into tunic cells. To elucidate the molecular mechanism, we further identified the target genes of miR4018a/4000f/4018b cluster using the combination approaches of TargetScan prediction and RNA-seq data. Left-right determination factor (Lefty) was confirmed as one of the target genes after narrow-down screening and an experimental luciferase assay. Furthermore, we showed that Lefty was expressed in the mesenchymal and tunic cells, indicating its potentially regulatory roles in mesenchymal cell differentiation and tunic formation. Notably, the defects in tunic formation and loss of tunic cells caused by overexpression of miR4018a/4000f/4018b cluster could be restored when Lefty was overexpressed in Ciona larvae, suggesting that miR4018a/4000f/4018b regulated the differentiation of mesenchymal cells into tunic cells through the Lefty signaling pathway during ascidian metamorphosis. Our findings, thus, reveal a novel microRNA-Lefty molecular pathway that regulates mesenchymal cells differentiating into tunic cells required for the tunic formation in tunicate species.
Collapse
Affiliation(s)
- Xueping Sun
- Sars Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoming Zhang
- Sars Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Likun Yang
- Sars Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
3
|
YAF2-Mediated YY1-Sirtuin6 Interactions Responsible for Mitochondrial Downregulation in Aging Tunicates. Mol Cell Biol 2021; 41:e0004721. [PMID: 33875574 DOI: 10.1128/mcb.00047-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In budding tunicates, aging accompanies a decrease in the gene expression of mitochondrial transcription factor A (Tfam), and the in vivo transfection of Tfam mRNA stimulates the mitochondrial respiratory activity of aged animals. The gene expression of both the transcriptional repressor Yin-Yang-1 (YY1) and corepressor Sirtuin6 (Sirt6) increased during aging, and the cotransfection of synthetic mRNA of YY1 and Sirt6 synergistically downregulated Tfam gene expression. Pulldown assays of proteins indicated that YY1-associated factor 2 (YAF2) was associated with both YY1 and SIRT6. Protein cross-linking confirmed that YAF2 bound YY1 and SIRT6 with a molar ratio of 1:1. YY1 was bound to CCAT- or ACAT-containing oligonucleotides in the 5' flanking region of the Tfam gene. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) showed that SIRT6 specifically induced the histone H3 lysine 9 (H3K9) deacetylation of the Tfam upstream region. YY1 and YAF2 accelerated SIRT6-induced H3K9 deacetylation. YY1 and Sirt6 mRNA transfection attenuated mitochondrial respiratory gene expression and blocked MitoTracker fluorescence. In contrast, the SIRT6 inhibitor and Tfam mRNA antagonized the inhibitory effects of YY1 and Sirt6, indicating that Tfam acts on mitochondria downstream of YY1 and Sirt6. We concluded that in the budding tunicate Polyandrocarpa misakiensis, YY1 recruits SIRT6 via YAF2 to the TFAM gene, resulting in aging-related mitochondrial downregulation.
Collapse
|
4
|
Alié A, Hiebert LS, Scelzo M, Tiozzo S. The eventful history of nonembryonic development in tunicates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:250-266. [PMID: 32190983 DOI: 10.1002/jez.b.22940] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/06/2022]
Abstract
Tunicates encompass a large group of marine filter-feeding animals and more than half of them are able to reproduce asexually by a particular form of nonembryonic development (NED) generally called budding. The phylogeny of tunicates suggests that asexual reproduction is an evolutionarily plastic trait, a view that is further reinforced by the fact that budding mechanisms differ from one species to another, involving nonhomologous tissues and cells. In this review, we explore more than 150 years of literature to provide an overview of NED diversity and we present a comparative picture of budding tissues across tunicates. Based on the phylogenetic relationships between budding and nonbudding species, we hypothesize that NED diversity is the result of seven independent acquisitions and subsequent diversifications in the course of tunicate evolution. While this scenario represents the state-of-the-art of our current knowledge, we point out gray areas that need to be further explored to refine our understanding of tunicate phylogeny and NED. Tunicates, with their plastic evolution and diversity of budding, represent an ideal playground for evolutionary developmental biologists to unravel the genetic and molecular mechanisms regulating nonembryonic development, as well as to better understand how such a profound innovation in life-history has evolved in numerous metazoans.
Collapse
Affiliation(s)
- Alexandre Alié
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | - Laurel S Hiebert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France.,Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Scelzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| |
Collapse
|
5
|
Scelzo M, Alié A, Pagnotta S, Lejeune C, Henry P, Gilletta L, Hiebert LS, Mastrototaro F, Tiozzo S. Novel budding mode in Polyandrocarpa zorritensis: a model for comparative studies on asexual development and whole body regeneration. EvoDevo 2019; 10:7. [PMID: 30984365 PMCID: PMC6446293 DOI: 10.1186/s13227-019-0121-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background In tunicates, the capacity to build an adult body via non-embryonic development (NED), i.e., asexual budding and whole body regeneration, has been gained or lost several times across the whole subphylum. A recent phylogeny of the family Styelidae revealed an independent acquisition of NED in the colonial species Polyandrocarpa zorritensis and highlighted a novel budding mode. In this paper, we provide the first detailed characterization of the asexual life cycle of P. zorritensis. Results Bud formation occurs along a tubular protrusion of the adult epidermis, the stolon, in a vascularized area defined as budding nest. The bud arises through a folding of the epithelia of the stolon with the contribution of undifferentiated mesenchymal cells. This previously unreported mode of bud onset leads to the formation of a double vesicle, which starts to develop into a zooid through morphogenetic mechanisms common to other Styelidae. The budding nest can also continue to accumulate nutrients and develop into a round-shaped structure, designated as spherule, which represents a dormant form able to survive low temperatures. Conclusions To understand the mechanisms of NED and their evolution, it is fundamental to start from a robust phylogenetic framework in order to select relevant species to compare. The anatomical description of P. zorritensis NED provides the foundation for future comparative studies on plasticity of budding and regeneration in tunicates. Electronic supplementary material The online version of this article (10.1186/s13227-019-0121-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Scelzo
- 1CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Alexandre Alié
- 1CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Sophie Pagnotta
- 2Centre Commun de Microscopie Appliquée, UFR Sciences, Faculté des Sciences del'Université de Nice - Sophia Antipolis, 06108 Nice, France
| | - Camille Lejeune
- 1CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Pauline Henry
- 1CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Laurent Gilletta
- 1CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Laurel S Hiebert
- 1CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230 Villefranche-sur-Mer, France.,3Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, 05508-090 Brazil
| | | | - Stefano Tiozzo
- 1CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
6
|
Kawamura K, Kinoshita M, Sekida S, Sunanaga T. Histone methylation codes involved in stemness, multipotency, and senescence in budding tunicates. Mech Ageing Dev 2014; 145:1-12. [PMID: 25543066 DOI: 10.1016/j.mad.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/24/2014] [Accepted: 12/20/2014] [Indexed: 12/19/2022]
Abstract
We examined the dynamics of nuclear histone H3 trimethylation related to cell differentiation and aging in a budding tunicate, Polyandrocarpa misakiensis. Throughout zooidal life, multipotent epithelial and coelomic cell nuclei showed strong trimethylation signals at H3 lysine27 (H3K27me3), consistent with the results of western blotting. Epidermal H3K27me3 repeatedly appeared in protruding buds and disappeared in senescent adult zooids. The budding-specific cytostatic factor TC14-3 allowed aging epidermal cells to restore H3K27me3 signals and mitochondrial gene activities via mitochondrial transcription factor a, all of which were made ineffective by an H3K27me3 inhibitor. Chromatin immunoprecipitation showed that TC14-3 enhances H3K27me3 of transdifferentiation-related genes and consequently downregulates the expression of these genes. In contrast, trimethylation signals at H3 lysine4 (H3K4me3) appeared transiently in transdifferentiating bud cells and stably lasted in undifferentiated adult cells without affecting H3K27me3. A transdifferentiation-related gene external signal-regulated kinase heavily underwent H3K4me3 in developing buds, which could be reproduced by retinoic acid. These results indicate that in P. misakiensis, TC14-3-driven H3K27 trimethylation is a default state of bud and zooid cells, which serves as the histone code for cell longevity. H3K27me3 and H3K4me3 double-positive signals are involved in cell stemness, and absence of signals is the indication of senescence.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan.
| | - Miyuki Kinoshita
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Satoko Sekida
- Laboratory of Cell Biology, Graduate School of Kuroshio Science, Kochi University, Kochi 780-8520, Japan
| | - Takeshi Sunanaga
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| |
Collapse
|
7
|
Shibuya M, Hatano M, Kawamura K. Interactive histone acetylation and methylation in regulating transdifferentiation-related genes during tunicate budding and regeneration. Dev Dyn 2014; 244:10-20. [PMID: 25298085 DOI: 10.1002/dvdy.24212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the budding tunicate Polyandrocarpa misakiensis, retinoic acid (RA)-triggered transdifferentiation occurs during bud development and zooid regeneration. We aimed to reveal how and to what extent epigenetic histone modifications are involved in transdifferentiation-related gene expression. RESULTS Acetylated histone H3 lysine 9 (H3K9ac) was observed in transdifferentiating bud tissues and regenerating zooid tissues, where a histone acetyltransferase (HAT) gene, PmGCN5, was strongly expressed. Results of chromatin immunoprecipitation (ChIP) indicated that in transdifferentiating bud tissues, retinoic acid receptor (PmRAR), retinoid X receptor (PmRXR), external signal-regulated kinase (PmERK), and β-catenin (PmβCTN) genes conspicuously underwent H3K9 acetylation in their core promoter regions. RA was found to induce PmGCN5, causing histone acetylation of PmRAR, PmRXR, and PmERK. A GCN5 inhibitor, CPTH2, attenuated acetylation and weakened transcription of transdifferentiation-related genes, except PmERK, indicating that RA-induced GCN5 facilitates gene expression via histone acetylation. In regenerating zooids, H3K9ac occurred exclusively in PmERK, but PmERK expression did not change, and, surprisingly, the PmProhibitin2 expression decreased substantially. In the core promoter regions of these genes, suppressive histone methylation occurred at H3K9 and H3K27. CONCLUSIONS These results, along with other evidence, indicate that cooperative and conflicting histone modifications enable the minute regulation of gene expression in P. misakiensis.
Collapse
Affiliation(s)
- Misa Shibuya
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, Japan
| | | | | |
Collapse
|
8
|
Gasparini F, Manni L, Cima F, Zaniolo G, Burighel P, Caicci F, Franchi N, Schiavon F, Rigon F, Campagna D, Ballarin L. Sexual and asexual reproduction in the colonial ascidian Botryllus schlosseri. Genesis 2014; 53:105-20. [PMID: 25044771 DOI: 10.1002/dvg.22802] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
The colonial tunicate Botryllus schlosseri is a widespread filter-feeding ascidian that lives in shallow waters and is easily reared in aquaria. Its peculiar blastogenetic cycle, characterized by the presence of three blastogenetic generations (filtering adults, buds, and budlets) and by recurrent generation changes, has resulted in over 60 years of studies aimed at understanding how sexual and asexual reproduction are coordinated and regulated in the colony. The possibility of using different methodological approaches, from classical genetics to cell transplantation, contributed to the development of this species as a valuable model organism for the study of a variety of biological processes. Here, we review the main studies detailing rearing, staging methods, reproduction and colony growth of this species, emphasizing the asymmetry in sexual and asexual reproduction potential, sexual reproduction in the field and the laboratory, and self- and cross-fertilization. These data, opportunely matched with recent tanscriptomic and genomic outcomes, can give a valuable help to the elucidation of some important steps in chordate evolution.
Collapse
|
9
|
Kawamura K, Shiohara M, Kanda M, Fujiwara S. Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev Biol 2013; 384:343-55. [PMID: 24120377 DOI: 10.1016/j.ydbio.2013.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
In the budding tunicate, Polyandrocarpa misakiensis, retinoic acid (RA) applied to buds promotes transdifferentiation of somatic cells to form the secondary body axis. This study investigated the gene cascade regulating such RA-triggered transdifferentiation in tunicates. Genes encoding retinoic acid receptor (RAR) and retinoid X receptor (RXR) were induced during transdifferentiation, and they responded to all-trans RA or 13-cis RA in vivo, whereas 9-cis RA had the least effects, demonstrating differences in the ligand preference between budding tunicates and vertebrates. In contrast to RAR mRNA, RXR mRNA could induce transdifferentiation-related genes such as RXR itself, ERK, and MYC in an RA-dependent manner and also induced β-catenin (β-CTN) RA-independently when it was introduced in vitro into tunicate cell lines that do not express endogenous RAR or RXR. Small interfering RNA (siRNA) of RXR dramatically attenuated not only RXR but also ERK and β-CTN gene activities. An ERK inhibitor severely blocked wound healing and dedifferentiation. β-CTN siRNA suppressed morphogenesis and redifferentiation, similar to RXR siRNA. These results indicate that in P. misakiensis, the main function of RA is to trigger positive feedback regulation of RXR rather than to activate RAR for unlocking downstream pathways for transdifferentiation. Our results may reflect an ancient mode of RA signaling in chordates.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, 2-5-1 Akebono-Cho, Kochi 780-8520, Japan.
| | | | | | | |
Collapse
|