2
|
The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate. J Neurosci 2018; 39:238-255. [PMID: 30504274 DOI: 10.1523/jneurosci.1059-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system, whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside (hemocytes) the nervous system require the same transcription factor glial cells deficient/glial cells missing (Glide/Gcm) for their development. This raises the issue of how do glia specifically differentiate in the nervous system, and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and panglial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us to understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENT Distinct cell types often require the same pioneer transcription factor, raising the issue of how one factor triggers different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the glial cells deficient/glial cells missing (Glide/Gcm) transcription factor, glia originate from the ectoderm, and hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification.
Collapse
|
3
|
Xi X, Lu L, Zhuge CC, Chen X, Zhai Y, Cheng J, Mao H, Yang CC, Tan BCM, Lee YN, Chien CT, Ho MS. The hypoparathyroidism-associated mutation in Drosophila Gcm compromises protein stability and glial cell formation. Sci Rep 2017; 7:39856. [PMID: 28051179 PMCID: PMC5209662 DOI: 10.1038/srep39856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023] Open
Abstract
Differentiated neurons and glia are acquired from immature precursors via transcriptional controls exerted by factors such as proteins in the family of Glial Cells Missing (Gcm). Mammalian Gcm proteins mediate neural stem cell induction, placenta and parathyroid development, whereas Drosophila Gcm proteins act as a key switch to determine neuronal and glial cell fates and regulate hemocyte development. The present study reports a hypoparathyroidism-associated mutation R59L that alters Drosophila Gcm (Gcm) protein stability, rendering it unstable, and hyperubiquitinated via the ubiquitin-proteasome system (UPS). GcmR59L interacts with the Slimb-based SCF complex and Protein Kinase C (PKC), which possibly plays a role in its phosphorylation, hence altering ubiquitination. Additionally, R59L causes reduced Gcm protein levels in a manner independent of the PEST domain signaling protein turnover. GcmR59L proteins bind DNA, functionally activate transcription, and induce glial cells, yet at a less efficient level. Finally, overexpression of either wild-type human Gcmb (hGcmb) or hGcmb carrying the conserved hypoparathyroidism mutation only slightly affects gliogenesis, indicating differential regulatory mechanisms in human and flies. Taken together, these findings demonstrate the significance of this disease-associated mutation in controlling Gcm protein stability via UPS, hence advance our understanding on how glial formation is regulated.
Collapse
Affiliation(s)
- Xiao Xi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lu Lu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chun-Chun Zhuge
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xuebing Chen
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yuanfen Zhai
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jingjing Cheng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| | - Haian Mao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chang-Ching Yang
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Yi-Nan Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Margaret S Ho
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.,Department of Anatomy and Neurobiology, 1239 Siping Road, Tongji University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
4
|
Guan B, Welch JM, Sapp JC, Ling H, Li Y, Johnston JJ, Kebebew E, Biesecker LG, Simonds WF, Marx SJ, Agarwal SK. GCM2-Activating Mutations in Familial Isolated Hyperparathyroidism. Am J Hum Genet 2016; 99:1034-1044. [PMID: 27745835 DOI: 10.1016/j.ajhg.2016.08.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine disease characterized by parathyroid hormone excess and hypercalcemia and caused by hypersecreting parathyroid glands. Familial PHPT occurs in an isolated nonsyndromal form, termed familial isolated hyperparathyroidism (FIHP), or as part of a syndrome, such as multiple endocrine neoplasia type 1 or hyperparathyroidism-jaw tumor syndrome. The specific genetic or other cause(s) of FIHP are unknown. We performed exome sequencing on germline DNA of eight index-case individuals from eight unrelated kindreds with FIHP. Selected rare variants were assessed for co-segregation in affected family members and screened for in an additional 32 kindreds with FIHP. In eight kindreds with FIHP, we identified three rare missense variants in GCM2, a gene encoding a transcription factor required for parathyroid development. Functional characterization of the GCM2 variants and deletion analyses revealed a small C-terminal conserved inhibitory domain (CCID) in GCM2. Two of the three rare variants were recurrent, located in the GCM2 CCID, and found in seven of the 40 (18%) kindreds with FIHP. These two rare variants acted as gain-of-function mutations that increased the transcriptional activity of GCM2, suggesting that GCM2 is a parathyroid proto-oncogene. Our results demonstrate that germline-activating mutations affecting the CCID of GCM2 can cause FIHP.
Collapse
|
5
|
Kim HJ, Ahn HJ, Lee S, Kim JH, Park J, Jeon SH, Kim SH. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system. Neuroscience 2015; 307:242-52. [PMID: 26318336 DOI: 10.1016/j.neuroscience.2015.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 08/08/2015] [Accepted: 08/20/2015] [Indexed: 11/26/2022]
Abstract
Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system.
Collapse
Affiliation(s)
- H J Kim
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - H J Ahn
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - S Lee
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - J H Kim
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - J Park
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea
| | - S-H Jeon
- Department of Biology Education, Seoul National University, Seoul 151-742, Republic of Korea
| | - S H Kim
- Department of Chemistry, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|