1
|
Nadolski NJ, Balay SD, Wong CXL, Waskiewicz AJ, Hocking JC. Abnormal Cone and Rod Photoreceptor Morphogenesis in gdf6a Mutant Zebrafish. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32293666 PMCID: PMC7401959 DOI: 10.1167/iovs.61.4.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.
Collapse
|
2
|
Cardozo MJ, Almuedo-Castillo M, Bovolenta P. Patterning the Vertebrate Retina with Morphogenetic Signaling Pathways. Neuroscientist 2019; 26:185-196. [PMID: 31509088 DOI: 10.1177/1073858419874016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes-proximo-distal, dorso-ventral, and naso-temporal-and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.
Collapse
Affiliation(s)
- Marcos J Cardozo
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | | | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Hocking JC, Famulski JK, Yoon KH, Widen SA, Bernstein CS, Koch S, Weiss O, Agarwala S, Inbal A, Lehmann OJ, Waskiewicz AJ. Morphogenetic defects underlie Superior Coloboma, a newly identified closure disorder of the dorsal eye. PLoS Genet 2018. [PMID: 29522511 PMCID: PMC5862500 DOI: 10.1371/journal.pgen.1007246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure. Ocular coloboma is a disease characterized by gaps in the lower portion of the eye and can affect the iris, lens, or retina, and cause loss of vision. Coloboma arises from incomplete closure of a transient fissure on the underside of the developing eye. Therefore, our identification of patients with similar tissue defects, but restricted to the superior half of eye, was surprising. Here, we describe an ocular developmental structure, the superior ocular sulcus, as a potential origin for the congenital disorder superior coloboma. Formation and closure of the sulcus are directed by dorsal-ventral eye patterning, and altered patterning interferes with the role of the sulcus as a pathway for blood vessel growth onto the eye.
Collapse
Affiliation(s)
- Jennifer C Hocking
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Jakub K Famulski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Biology, University of Kentucky, Lexington, Unites States of America
| | - Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Sonya A Widen
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Cassidy S Bernstein
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Unites States of America.,Institute for Neuroscience, University of Texas at Austin, Austin, Unites States of America
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| | - Andrew J Waskiewicz
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Valdivia LE, Lamb DB, Horner W, Wierzbicki C, Tafessu A, Williams AM, Gestri G, Krasnow AM, Vleeshouwer-Neumann TS, Givens M, Young RM, Lawrence LM, Stickney HL, Hawkins TA, Schwarz QP, Cavodeassi F, Wilson SW, Cerveny KL. Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish. Development 2016; 143:1087-98. [PMID: 26893342 PMCID: PMC4852494 DOI: 10.1242/dev.130922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye. Summary: In the vertebrate eye, dorsally expressed Gdf6a limits RA pathway activity to control the transition from proliferation to differentiation, thereby regulating eye size.
Collapse
Affiliation(s)
- Leonardo E Valdivia
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Dayna B Lamb
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wilson Horner
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Claudia Wierzbicki
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Amanuel Tafessu
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Audrey M Williams
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Anna M Krasnow
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | | | - McKenzie Givens
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Lisa M Lawrence
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Heather L Stickney
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Quenten P Schwarz
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Kara L Cerveny
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
5
|
Mitchell DM, Stevens CB, Frey RA, Hunter SS, Ashino R, Kawamura S, Stenkamp DL. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish. PLoS Genet 2015; 11:e1005483. [PMID: 26296154 PMCID: PMC4546582 DOI: 10.1371/journal.pgen.1005483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig B. Stevens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ruth A. Frey
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wang X, Lupo G, He R, Barsacchi G, Harris WA, Liu Y. Dorsoventral patterning of the Xenopus eye involves differential temporal changes in the response of optic stalk and retinal progenitors to Hh signalling. Neural Dev 2015; 10:7. [PMID: 25886149 PMCID: PMC4373414 DOI: 10.1186/s13064-015-0035-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/04/2015] [Indexed: 01/20/2023] Open
Abstract
Background Hedgehog (Hh) signals are instrumental to the dorsoventral patterning of the vertebrate eye, promoting optic stalk and ventral retinal fates and repressing dorsal retinal identity. There has been limited analysis, however, of the critical window during which Hh molecules control eye polarity and of the temporal changes in the responsiveness of eye cells to these signals. Results In this study, we used pharmacological and molecular tools to perform stage-specific manipulations of Hh signalling in the developing Xenopus eye. In gain-of-function experiments, most of the eye was sensitive to ventralization when the Hh pathway was activated starting from gastrula/neurula stages. During optic vesicle stages, the dorsal eye became resistant to Hh-dependent ventralization, but this pathway could partially upregulate optic stalk markers within the retina. In loss-of-function assays, inhibition of Hh signalling starting from neurula stages caused expansion of the dorsal retina at the expense of the ventral retina and the optic stalk, while the effects of Hh inhibition during optic vesicle stages were limited to the reduction of optic stalk size. Conclusions Our results suggest the existence of two competence windows during which the Hh pathway differentially controls patterning of the eye region. In the first window, between the neural plate and the optic vesicle stages, Hh signalling exerts a global influence on eye dorsoventral polarity, contributing to the specification of optic stalk, ventral retina and dorsal retinal domains. In the second window, between optic vesicle and optic cup stages, this pathway plays a more limited role in the maintenance of the optic stalk domain. We speculate that this temporal regulation is important to coordinate dorsoventral patterning with morphogenesis and differentiation processes during eye development. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0035-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiumei Wang
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| | - Giuseppe Lupo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK. .,Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Rongqiao He
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| | - Giuseppina Barsacchi
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, SS 12 Abetone e Brennero 4, 56127, Pisa, Italy.
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Ying Liu
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
7
|
Pi-Roig A, Martin-Blanco E, Minguillon C. Distinct tissue-specific requirements for the zebrafish tbx5 genes during heart, retina and pectoral fin development. Open Biol 2014; 4:140014. [PMID: 24759614 PMCID: PMC4043114 DOI: 10.1098/rsob.140014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The transcription factor Tbx5 is expressed in the developing heart, eyes and anterior appendages. Mutations in human TBX5 cause Holt-Oram syndrome, a condition characterized by heart and upper limb malformations. Tbx5-knockout mouse embryos have severely impaired forelimb and heart morphogenesis from the earliest stages of their development. However, zebrafish embryos with compromised tbx5 function show a complete absence of pectoral fins, while heart development is disturbed at significantly later developmental stages and eye development remains to be thoroughly analysed. We identified a novel tbx5 gene in zebrafish--tbx5b--that is co-expressed with its paralogue, tbx5a, in the developing eye and heart and hypothesized that functional redundancy could be occurring in these organs in embryos with impaired tbx5a function. We have now investigated the consequences of tbx5a and/or tbx5b downregulation in zebrafish to reveal that tbx5 genes have essential roles in the establishment of cardiac laterality, dorsoventral retina axis organization and pectoral fin development. Our data show that distinct relationships between tbx5 paralogues are required in a tissue-specific manner to ensure the proper morphogenesis of the three organs in which they are expressed. Furthermore, we uncover a novel role for tbx5 genes in the establishment of correct heart asymmetry in zebrafish embryos.
Collapse
Affiliation(s)
- Aina Pi-Roig
- CSIC-Institut de Biologia Molecular de Barcelona, Department of Developmental Biology, Parc Científic de Barcelona, C/Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | |
Collapse
|
8
|
Sfrp1a and Sfrp5 function as positive regulators of Wnt and BMP signaling during early retinal development. Dev Biol 2014; 388:192-204. [PMID: 24457098 DOI: 10.1016/j.ydbio.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/16/2013] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
Abstract
Axial patterning of the developing eye is critically important for proper axonal pathfinding as well as for key morphogenetic events, such as closure of the optic fissure. The dorsal retina is initially specified by the actions of Bone Morphogenetic Protein (BMP) signaling, with such identity subsequently maintained by the Wnt-β catenin pathway. Using zebrafish as a model system, we demonstrate that Secreted frizzled-related protein 1a (Sfrp1a) and Sfrp5 work cooperatively to pattern the retina along the dorso-ventral axis. Sfrp1a/5 depleted embryos display a reduction in dorsal marker gene expression that is consistent with defects in BMP- and Wnt-dependent dorsal retina identity. In accord with this finding, we observe a marked reduction in transgenic reporters of BMP and Wnt signaling within the dorsal retina of Sfrp1a/5 depleted embryos. In contrast to studies in which canonical Wnt signaling is blocked, we note an increase in BMP ligand expression in Sfrp1a/5 depleted embryos, a phenotype similar to that seen in embryos with inhibited BMP signaling. Overexpression of a low dose of sfrp5 mRNA causes an increase in dorsal retina marker gene expression. We propose a model in which Sfrp proteins function as facilitators of both BMP and Wnt signaling within the dorsal retina.
Collapse
|
9
|
Ivanovitch K, Cavodeassi F, Wilson S. Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Dev Cell 2013; 27:293-305. [PMID: 24209576 PMCID: PMC3898423 DOI: 10.1016/j.devcel.2013.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 08/16/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
Using high-resolution live imaging in zebrafish, we show that presumptive eye cells acquire apicobasal polarity and adopt neuroepithelial character prior to other regions of the neural plate. Neuroepithelial organization is first apparent at the margin of the eye field, whereas cells at its core have mesenchymal morphology. These core cells subsequently intercalate between the marginal cells contributing to the bilateral expansion of the optic vesicles. During later evagination, optic vesicle cells shorten, drawing their apical surfaces laterally relative to the basal lamina, resulting in further laterally directed evagination. The early neuroepithelial organization of the eye field requires Laminin1, and ectopic Laminin1 can redirect the apicobasal orientation of eye field cells. Furthermore, disrupting cell polarity through combined abrogation of the polarity protein Pard6γb and Laminin1 severely compromises optic vesicle evagination. Our studies elucidate the cellular events underlying early eye morphogenesis and provide a framework for understanding epithelialization and complex tissue formation.
Collapse
Affiliation(s)
- Kenzo Ivanovitch
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|