1
|
Schall PZ, Latham KE. Cross-species meta-analysis of transcriptome changes during the morula-to-blastocyst transition: metabolic and physiological changes take center stage. Am J Physiol Cell Physiol 2021; 321:C913-C931. [PMID: 34669511 DOI: 10.1152/ajpcell.00318.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The morula-to-blastocyst transition (MBT) culminates with formation of inner cell mass (ICM) and trophectoderm (TE) lineages. Recent studies identified signaling pathways driving lineage specification, but some features of these pathways display significant species divergence. To better understand evolutionary conservation of the MBT, we completed a meta-analysis of RNA sequencing data from five model species and ICMTE differences from four species. Although many genes change in expression during the MBT within any given species, the number of shared differentially expressed genes (DEGs) is comparatively small, and the number of shared ICMTE DEGs is even smaller. DEGs related to known lineage determining pathways (e.g., POU5F1) are seen, but the most prominent pathways and functions associated with shared DEGs or shared across individual species DEG lists impact basic physiological and metabolic activities, such as TCA cycle, unfolded protein response, oxidative phosphorylation, sirtuin signaling, mitotic roles of polo-like kinases, NRF2-mediated oxidative stress, estrogen receptor signaling, apoptosis, necrosis, lipid and fatty acid metabolism, cholesterol biosynthesis, endocytosis, AMPK signaling, homeostasis, transcription, and cell death. We also observed prominent differences in transcriptome regulation between ungulates and nonungulates, particularly for ICM- and TE-enhanced mRNAs. These results extend our understanding of shared mechanisms of the MBT and formation of the ICM and TE and should better inform the selection of model species for particular applications.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology, & Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
2
|
Okamoto I, Nakamura T, Sasaki K, Yabuta Y, Iwatani C, Tsuchiya H, Nakamura SI, Ema M, Yamamoto T, Saitou M. The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science 2021; 374:eabd8887. [PMID: 34793202 DOI: 10.1126/science.abd8887] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotaro Sasaki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Shin-Ichiro Nakamura
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masatsugu Ema
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,AMED-CREST, AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.,Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Bansal P, Ahern DT, Kondaveeti Y, Qiu CW, Pinter SF. Contiguous erosion of the inactive X in human pluripotency concludes with global DNA hypomethylation. Cell Rep 2021; 35:109215. [PMID: 34107261 PMCID: PMC8267460 DOI: 10.1016/j.celrep.2021.109215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Female human pluripotent stem cells (hPSCs) routinely undergo inactive X (Xi) erosion. This progressive loss of key repressive features follows the loss of XIST expression, the long non-coding RNA driving X inactivation, and causes reactivation of silenced genes across the eroding X (Xe). To date, the sporadic and progressive nature of erosion has obscured its scale, dynamics, and key transition events. To address this problem, we perform an integrated analysis of DNA methylation (DNAme), chromatin accessibility, and gene expression across hundreds of hPSC samples. Differential DNAme orders female hPSCs across a trajectory from initiation to terminal Xi erosion. Our results identify a cis-regulatory element crucial for XIST expression, trace contiguously growing reactivated domains to a few euchromatic origins, and indicate that the late-stage Xe impairs DNAme genome-wide. Surprisingly, from this altered regulatory landscape emerge select features of naive pluripotency, suggesting that its link to X dosage may be partially conserved in human embryonic development. Reactivation of the silenced X in human female iPSC/ESCs compromises their utility. Bansal et al. perform an integrated genomics analysis to reveal a prevalent X erosion trajectory that they validate in long-term culture. Starting with XIST loss, this trajectory indicates that reactivation may spread contiguously from escapees to silenced genes.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Catherine W Qiu
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
4
|
Cidral AL, de Mello JCM, Gribnau J, Pereira LV. Concurrent X chromosome inactivation and upregulation during non-human primate preimplantation development revealed by single-cell RNA-sequencing. Sci Rep 2021; 11:9624. [PMID: 33953270 PMCID: PMC8100148 DOI: 10.1038/s41598-021-89175-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, dosage compensation of X-linked gene expression between males and females is achieved by inactivation of a single X chromosome in females, while upregulation of the single active X in males and females leads to X:autosome dosage balance. Studies in human embryos revealed that random X chromosome inactivation starts at the preimplantation stage and is not complete by day 12 of development. Alternatively, others proposed that dosage compensation in human preimplantation embryos is achieved by dampening expression from the two X chromosomes in females. Here, we characterize X-linked dosage compensation in another primate, the marmoset (Callithrix jacchus). Analyzing scRNA-seq data from preimplantation embryos, we detected upregulation of XIST at the morula stage, where female embryos presented a significantly higher expression of XIST than males. Moreover, we show an increase of X-linked monoallelically expressed genes in female embryos between the morula and late blastocyst stages, indicative of XCI. Nevertheless, dosage compensation was not achieved by the late blastocyst stage. Finally, we show that X:autosome dosage compensation is achieved at the 8-cell stage, and demonstrate that X chromosome dampening in females does not take place in the marmoset. Our work contributes to the elucidation of primate X-linked dosage compensation.
Collapse
Affiliation(s)
- Ana Luíza Cidral
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Joana C Moreira de Mello
- Department of Developmental Biology, Oncode Institute, Erasmus MC University Medical Center, 3015GE, Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Oncode Institute, Erasmus MC University Medical Center, 3015GE, Rotterdam, The Netherlands
| | - Lygia V Pereira
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
5
|
Deng M, Liu Z, Ren C, An S, Wan Y, Wang F. Highly methylated Xist in SCNT embryos was retained in deceased cloned female goats. Reprod Fertil Dev 2020; 31:855-866. [PMID: 30641030 DOI: 10.1071/rd18302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
X (inactive)-specific transcript (Xist) is crucial in murine cloned embryo development, but its role in cloned goats remains unknown. Therefore, in this study we examined the expression and methylation status of Xist in somatic cell nuclear transfer (SCNT) embryos, as well as in ear, lung, and brain tissue of deceased cloned goats. First, the Xist sequence was amplified and a differentially methylated region was identified in oocytes and spermatozoa. Xist methylation levels were greater in SCNT- than intracytoplasmic sperm injection-generated female 8-cell embryos. In addition, compared with naturally bred controls, Xist methylation levels were significantly increased in the ear, lung, and brain tissue of 3-day-old female deceased cloned goats, but were unchanged in the ear tissue of female live cloned goats and in the lung and brain of male deceased cloned goats. Xist expression was significantly increased in the ear tissue of female live cloned goats, but decreased in the lung and brain of female deceased cloned goats. In conclusion, hypermethylation of Xist may have resulted from incomplete reprogramming and may be retained in 3-day-old female deceased cloned goats, subsequently leading to dysregulation of Xist.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyu An
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; and Corresponding authors. Emails: ;
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; and Corresponding authors. Emails: ;
| |
Collapse
|
6
|
Zou H, Yu D, Du X, Wang J, Chen L, Wang Y, Xu H, Zhao Y, Zhao S, Pang Y, Liu Y, Hao H, Zhao X, Du W, Dai Y, Li N, Wu S, Zhu H. No imprinted XIST expression in pigs: biallelic XIST expression in early embryos and random X inactivation in placentas. Cell Mol Life Sci 2019; 76:4525-4538. [PMID: 31139846 PMCID: PMC11105601 DOI: 10.1007/s00018-019-03123-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Dosage compensation, which is achieved by X-chromosome inactivation (XCI) in female mammals, ensures balanced X-linked gene expression levels between the sexes. Although eutherian mammals commonly display random XCI in embryonic and adult tissues, imprinted XCI has also been identified in extraembryonic tissues of mouse, rat, and cow. Little is known about XCI in pigs. Here, we sequenced the porcine XIST gene and identified an insertion/deletion mutation between Asian- and Western-origin pig breeds. Allele-specific analysis revealed biallelic XIST expression in porcine ICSI blastocysts. To investigate the XCI pattern in porcine placentas, we performed allele-specific RNA sequencing analysis on individuals from reciprocal crosses between Duroc and Rongchang pigs. Our results were the first to reveal that random XCI occurs in the placentas of pigs. Next, we investigated the H3K27me3 histone pattern in porcine blastocysts, showing that only 17-31.8% cells have attained XCI. The hypomethylation status of an important XIST DMR (differentially methylated region) in gametes and early embryos demonstrated that no methylation is pre-deposited on XIST in pigs. Our findings reveal that the XCI regulation mechanism in pigs is different from that in mice and highlight the importance of further study of the mechanisms regulating XCI during early porcine embryo development.
Collapse
Affiliation(s)
- Huiying Zou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Chen
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Yangyang Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huitao Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunxuan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanjiang Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunwei Pang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haisheng Hao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueming Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weihua Du
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunping Dai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| | - Huabin Zhu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
McGill TJ, Stoddard J, Renner LM, Messaoudi I, Bharti K, Mitalipov S, Lauer A, Wilson DJ, Neuringer M. Allogeneic iPSC-Derived RPE Cell Graft Failure Following Transplantation Into the Subretinal Space in Nonhuman Primates. Invest Ophthalmol Vis Sci 2018; 59:1374-1383. [PMID: 29625461 PMCID: PMC5846443 DOI: 10.1167/iovs.17-22467] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To characterize the intraocular immune response following transplantation of iPS-derived allogeneic RPE cells into the subretinal space of non–immune-suppressed rhesus macaques. Methods GFP-labeled allogeneic iPS-derived RPE cells were transplanted into the subretinal space of one eye (n = 6), and into the contralateral eye 1 day to 4 weeks later, using a two-stage transretinal and transscleral approach. Retinas were examined pre- and post-surgery by color fundus photography, fundus autofluorescence, and optical coherence tomography (OCT) imaging. Animals were euthanized between 2 hours and 7 weeks following transplantation. T-cell (CD3), B-cell (CD20), and microglial (Iba1) responses were assessed immunohistochemically. Results Cells were delivered into the subretinal space in all eyes without leakage into the vitreous. Transplanted RPE cells were clearly visible at 4 days after surgery but were no longer detectable by 3 weeks. In localized areas within the bleb containing transplanted cells, T- and B-cell infiltrates and microglia were observed in the subretinal space and underlying choroid. A T-cell response predominated at 4 days, but converted to a B-cell response at 3 weeks. By 7 weeks, few infiltrates or microglia remained. Host RPE and choroid were disrupted in the immediate vicinity of the graft, with fibrosis in the subretinal space. Conclusions Engraftment of allogeneic RPE cells failed following transplantation into the subretinal space of rhesus macaques, likely due to rejection by the immune system. These data underscore the need for autologous cell sources and/or confirmation of adequate immune suppression to ensure survival of transplanted RPE cells.
Collapse
Affiliation(s)
- Trevor J McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States.,Department of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Jonathan Stoddard
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Lauren M Renner
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute/National Institutes of Health, Bethesda, Maryland, United States
| | - Shoukhrat Mitalipov
- Department of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Andreas Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - David J Wilson
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Martha Neuringer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States.,Department of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| |
Collapse
|
8
|
Min B, Park JS, Jeon K, Kang YK. Characterization of X-Chromosome Gene Expression in Bovine Blastocysts Derived by In vitro Fertilization and Somatic Cell Nuclear Transfer. Front Genet 2017; 8:42. [PMID: 28443134 PMCID: PMC5385346 DOI: 10.3389/fgene.2017.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
To better understand X-chromosome reactivation (XCR) during early development, we analyzed transcriptomic data obtained from bovine male and female blastocysts derived by in-vitro fertilization (IVF) or somatic-cell nuclear transfer (SCNT). We found that X-linked genes were upregulated by almost two-fold in female compared with male IVF blastocysts. The upregulation of X-linked genes in female IVFs indicated a transcriptional dimorphism between the sexes, because the mean autosomal gene expression levels were relatively constant, regardless of sex. X-linked genes were expressed equivalently in the inner-cell mass and the trophectoderm parts of female blastocysts, indicating no imprinted inactivation of paternal X in the trophectoderm. All these features of X-linked gene expression observed in IVFs were also detected in SCNT blastocysts, although to a lesser extent. A heatmap of X-linked gene expression revealed that the initial resemblance of X-linked gene expression patterns between male and female donor cells turned sexually divergent in host SCNTs, ultimately resembling the patterns of male and female IVFs. Additionally, we found that sham SCNT blastocysts, which underwent the same nuclear-transfer procedures, but retained their embryonic genome, closely mimicked IVFs for X-linked gene expression, which indicated that the embryo manipulation procedure itself does not interfere with XCR in SCNT blastocysts. Our findings indicated that female SCNTs have less efficient XCR, suggesting that clonal reprogramming of X chromosomes is incomplete and occurs variably among blastocysts, and even among cells in a single blastocyst.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience BiotechnologyDaejeon, South Korea
| |
Collapse
|
9
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|
10
|
Pessia E, Engelstädter J, Marais GAB. The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis? Cell Mol Life Sci 2014; 71:1383-94. [PMID: 24173285 PMCID: PMC11113734 DOI: 10.1007/s00018-013-1499-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
Abstract
Ohno's hypothesis states that dosage compensation in mammals evolved in two steps: a twofold hyperactivation of the X chromosome in both sexes to compensate for gene losses on the Y chromosome, and silencing of one X (X-chromosome inactivation, XCI) in females to restore optimal dosage. Recent tests of this hypothesis have returned contradictory results. In this review, we explain this ongoing controversy and argue that a novel view on dosage compensation evolution in mammals is starting to emerge. Ohno's hypothesis may be true for a few, dosage-sensitive genes only. If so few genes are compensated, then why has XCI evolved as a chromosome-wide mechanism? This and several other questions raised by the new data in mammals are discussed, and future research directions are proposed.
Collapse
Affiliation(s)
- Eugénie Pessia
- Laboratoire de Biométrie et Biologie Évolutive, Centre National de la Recherche Scientifique, Université Lyon 1, Bat. Gregor Mendel, 16 rue Raphaël Dubois, 69622, Villeurbanne Cedex, France,
| | | | | |
Collapse
|
11
|
Thiagarajan RD, Morey R, Laurent LC. The epigenome in pluripotency and differentiation. Epigenomics 2014; 6:121-37. [DOI: 10.2217/epi.13.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to culture pluripotent stem cells and direct their differentiation into specific cell types in vitro provides a valuable experimental system for modeling pluripotency, development and cellular differentiation. High-throughput profiling of the transcriptomes and epigenomes of pluripotent stem cells and their differentiated derivatives has led to identification of patterns characteristic of each cell type, discovery of new regulatory features in the epigenome and early insights into the complexity of dynamic interactions among regulatory elements. This work has also revealed potential limitations of the use of pluripotent stem cells as in vitro models of developmental events, due to epigenetic variability among different pluripotent stem cell lines and epigenetic instability during derivation and culture, particularly at imprinted and X-inactivated loci. This review focuses on the two most well-studied epigenetic mechanisms, DNA methylation and histone modifications, within the context of pluripotency and differentiation.
Collapse
Affiliation(s)
- Rathi D Thiagarajan
- Department of Reproductive Medicine, The University of California, San Diego, La Jolla, CA, USA
| | - Robert Morey
- Department of Reproductive Medicine, The University of California, San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Department of Reproductive Medicine, The University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Sado T, Sakaguchi T. Species-specific differences in X chromosome inactivation in mammals. Reproduction 2013; 146:R131-9. [PMID: 23847260 DOI: 10.1530/rep-13-0173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In female mammals, the dosage difference in X-linked genes between XX females and XY males is compensated for by inactivating one of the two X chromosomes during early development. Since the discovery of the X inactive-specific transcript (XIST) gene in humans and its subsequent isolation of the mouse homolog, Xist, in the early 1990s, the molecular basis of X chromosome inactivation (X-inactivation) has been more fully elucidated using genetically manipulated mouse embryos and embryonic stem cells. Studies on X-inactivation in other mammals, although limited when compared with those in the mice, have revealed that, while their inactive X chromosome shares many features with those in the mice, there are marked differences in not only some epigenetic modifications of the inactive X chromosome but also when and how X-inactivation is initiated during early embryonic development. Such differences raise the issue about what extent of the molecular basis of X-inactivation in the mice is commonly shared among others. Recognizing similarities and differences in X-inactivation among mammals may provide further insight into our understanding of not only the evolutionary but also the molecular aspects for the mechanism of X-inactivation. Here, we reviewed species-specific differences in X-inactivation and discussed what these differences may reveal.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
13
|
Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, Tang F, Wang Y, Zhang C, Liu XY, Lai D, Jin Y, Sun Q, Li J. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 2013; 23:1187-200. [PMID: 23856644 PMCID: PMC3790242 DOI: 10.1038/cr.2013.93] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
Recent success in the derivation of haploid embryonic stem cells (haESCs) from mouse via parthenogenesis and androgenesis has enabled genetic screening in mammalian cells and generation of gene-modified animals. However, whether haESCs can be derived from primates remains unknown. Here, we report the derivation of haESCs from parthenogenetic blastocysts of Macaca fascicularis monkeys. These cells, termed as PG-haESCs, are pluripotent and can differentiate to cells of three embryonic germ layers in vitro or in vivo. Interestingly, the haploidy of one monkey PG-haESC line (MPH1) is more stable compared with that of the other one (MPH2), as shown by the existence of haploid cells for more than 140 days without fluorescence-activated cell sorting (FACS) enrichment of haploid cells. Importantly, transgenic monkey PG-haESC lines can be generated by lentivirus- and piggyBac transposon-mediated gene transfer. Moreover, genetic screening is feasible in monkey PG-haESCs. Our results demonstrate that PG-haESCs can be generated from monkeys, providing an ideal tool for genetic analyses in primates.
Collapse
Affiliation(s)
- Hui Yang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lessing D, Anguera MC, Lee JT. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet 2013; 14:85-110. [PMID: 23662665 DOI: 10.1146/annurev-genom-091212-153530] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reprogramming somatic cells to derive induced pluripotent stem cells (iPSCs) has provided a new method to model disease and holds great promise for regenerative medicine. Although genetically identical to their donor somatic cells, iPSCs undergo substantial changes in the epigenetic landscape during reprogramming. One such epigenetic process, X chromosome inactivation (XCI), has recently been shown to vary widely in human female iPSCs and embryonic stem cells (ESCs). XCI is a form of dosage compensation whose chief regulator is the noncoding RNA Xist. In mouse iPSCs and ESCs, Xist expression and XCI strictly correlate with the pluripotent state, but no such correlation exists in humans. Lack of XIST expression in human cells is linked to reduced developmental potential and an altered transcriptional profile, including upregulation of genes associated with cancer, which has therefore led to concerns about the safety of pluripotent stem cells for use in regenerative medicine. In this review, we describe how different states of XIST expression define three classes of female human pluripotent stem cells and explore progress in discovering the reasons for these variations and how they might be countered.
Collapse
Affiliation(s)
- Derek Lessing
- Howard Hughes Medical Institute, Department of Molecular Biology, and Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
15
|
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152:1308-23. [PMID: 23498939 DOI: 10.1016/j.cell.2013.02.016] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 12/22/2022]
Abstract
X chromosome inactivation and genomic imprinting are classic epigenetic processes that cause disease when not appropriately regulated in mammals. Whereas X chromosome inactivation evolved to solve the problem of gene dosage, the purpose of genomic imprinting remains controversial. Nevertheless, the two phenomena are united by allelic control of large gene clusters, such that only one copy of a gene is expressed in every cell. Allelic regulation poses significant challenges because it requires coordinated long-range control in cis and stable propagation over time. Long noncoding RNAs have emerged as a common theme, and their contributions to diseases of imprinting and the X chromosome have become apparent. Here, we review recent advances in basic biology, the connections to disease, and preview potential therapeutic strategies for future development.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
16
|
Dupont C, Gribnau J. Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 2013; 25:314-21. [PMID: 23578369 DOI: 10.1016/j.ceb.2013.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Dosage compensation of X-linked gene products between the sexes in therians has culminated in the inactivation of one of the two X chromosomes in female cells. Over the years, the mouse has been the preferred animal model to study this X-chromosome inactivation (XCI) process in placental mammals (eutherians). Similar to the imprinted inactivation of the paternally inherited X chromosome (Xp) in marsupials (methatherians), the Xp is inactivated during early mouse development. In this eutherian model, cell derivatives of the primitive endoderm (PE) and trophectoderm (TE) will continue to display this imprinted form of XCI. Cells developing from the mouse epiblast will reactivate the Xp, and subsequently initiate XCI of either the Xp or the maternally inherited Xm, in a random manner. Examination of XCI in other eutherians and in metatherians, however, indicates clear differences in the form and timing of XCI. This review highlights and discusses imprinted and random XCI from such a comparative viewpoint.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3015GE Rotterdam, The Netherlands
| | | |
Collapse
|