1
|
Grall E, Feregrino C, Fischer S, De Courten A, Sacher F, Hiscock TW, Tschopp P. Self-organized BMP signaling dynamics underlie the development and evolution of digit segmentation patterns in birds and mammals. Proc Natl Acad Sci U S A 2024; 121:e2304470121. [PMID: 38175868 PMCID: PMC10786279 DOI: 10.1073/pnas.2304470121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024] Open
Abstract
Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern. Here, using single-cell RNA sequencing and spatial gene expression profiling, we investigate the transcriptional dynamics of interphalangeal joint specification in vivo. Combined with mathematical modeling, we predict that interactions within the BMP signaling pathway-between the ligand GDF5, the inhibitor NOGGIN, and the intracellular effector pSMAD-result in a self-organizing Turing system that forms periodic joint patterns. Our model is able to recapitulate the spatiotemporal gene expression dynamics observed in vivo, as well as phenocopy digit malformations caused by BMP pathway perturbations. By contrasting in silico simulations with in vivo morphometrics of two morphologically distinct digits, we show how changes in signaling parameters and growth dynamics can result in variations in the size and number of phalanges. Together, our results reveal a self-organizing mechanism that underpins amniote digit segmentation and its evolvability and, more broadly, illustrate how Turing systems based on a single molecular pathway may generate complex repetitive patterns in a wide variety of organisms.
Collapse
Affiliation(s)
- Emmanuelle Grall
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Aline De Courten
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Fabio Sacher
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Tom W. Hiscock
- Institute of Medical Sciences, University of Aberdeen, AberdeenAB25 2ZD, Scotland, United Kingdom
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| |
Collapse
|
2
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Abstract
PURPOSE In humans, loss-of-function mutations in the gene encoding Chordin-like 1 (CHRDL1) cause X-linked megalocornea (MGC1), characterized by bilateral corneal enlargement, decreased corneal thickness, and increased anterior chamber depth (ACD). We sought to determine whether Chrdl1 knockout (KO) mice would recapitulate the ocular findings found in patients with MGC1. METHODS We generated mice with a Chrdl1 KO allele and confirmed that male Chrdl1 hemizygous KO mice do not express Chrdl1 mRNA. We examined the eyes of male mice that were hemizygous for either the wild-type (WT) or KO allele and measured corneal diameter, corneal area, corneal thickness, endothelial cell density, ACD, tear volume, and intraocular pressure. We also harvested retinas and counted retinal ganglion cell numbers. Eye segregation pattern in the dorsal lateral geniculate nucleus were also compared between male Chrdl1 KO and WT mice. RESULTS Male Chrdl1 KO mice do not have larger cornea diameters than WT mice. KO mice have significantly thicker central corneas (116.5 ± 3.9 vs. 100.9 ± 4.2 μm, P = 0.013) and smaller ACD (325.7 ± 5.7 vs. 405.6 ± 6.3 μm, P < 0.001) than WT mice, which is the converse of what occurs in patients who lack CHRDL1. Retinal-thalamic projections and other ocular measurements did not significantly differ between KO and WT mice. CONCLUSIONS Male Chrdl1 KO mice do not have the same anterior chamber abnormalities seen in humans with CHRDL1 mutations. Therefore, Chrdl1 KO mice do not recapitulate the human MGC1 phenotype. Nevertheless, Chrdl1 plays a role during mouse ocular development because corneas in KO mice differ from those in WT mice.
Collapse
|
4
|
Basit S, Khoshhal KI. Genetics of clubfoot; recent progress and future perspectives. Eur J Med Genet 2017; 61:107-113. [PMID: 28919208 DOI: 10.1016/j.ejmg.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022]
Abstract
Clubfoot or talipes equinovarus (TEV) is an inborn three-dimensional deformity of leg, ankle and foot. It results from structural defects of several tissues of foot and lower leg leading to abnormal positioning of foot and ankle joints. TEV can lead to long-lasting functional disability, malformation and discomfort if left untreated. Substantial progress has been achieved in the management and diagnosis of limb defects; however, not much is known about the molecular players and signalling pathways underlying TEV disorder. The homeostasis and development of the limb depends on the complex interactions between the lateral plate mesoderm cells and outer ectoderm. These complex interactions include HOX signalling and PITX1-TBX4 pathways. The susceptibility to develop TEV is determined by a number of environmental and genetic factors, although the nature and level of interplay between them remains unclear. Familial occurrence and inter and intra phenotypic variability of TEV is well documented. Variants in genes that code for contractile proteins of skeletal myofibers might play a role in the aetiology of TEV but, to date, no strong candidate genes conferring increased risk have emerged, although variants in TBX4, PITX1, HOXA, HOXC and HOXD clusters genes, NAT2 and others have been shown to be associated with TEV. The mechanisms by which variants in these genes confer risk and the nature of the physical and genetic interaction between them remains to be determined. Elucidation of genetic players and cellular pathways underlying TEV will certainly increase our understanding of the pathophysiology of this deformity.
Collapse
Affiliation(s)
- Sulman Basit
- Centre for Genetics and Inherited Diseases, Taibah University Almadinah Almunawwarah, Saudi Arabia.
| | - Khalid I Khoshhal
- College of Medicine, Taibah University Almadinah Almunawwarah, Saudi Arabia
| |
Collapse
|
5
|
Budna J, Rybska M, Ciesiółka S, Bryja A, Borys S, Kranc W, Wojtanowicz-Markiewicz K, Jeseta M, Sumelka E, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM - a microarray approach. Reprod Biol Endocrinol 2017; 15:43. [PMID: 28576120 PMCID: PMC5457624 DOI: 10.1186/s12958-017-0261-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However, the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation. METHODS Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix microarray approach and validated by RT-qPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group. RESULTS The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated and 40 were up-regulated. The DAVID database indicated a "BMP signaling pathway" ontology group, which was significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta receptor-type III (TGFβR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1). CONCLUSIONS Increased expression of CHRDL1, FST, TGFβR3, SMAD4, and ID1 transcripts before IVM suggested a subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before IVM increased expression was observed.
Collapse
Affiliation(s)
- Joanna Budna
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Marta Rybska
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Sylwia Ciesiółka
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Artur Bryja
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Sylwia Borys
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Wiesława Kranc
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Katarzyna Wojtanowicz-Markiewicz
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Michal Jeseta
- 0000 0004 0609 2751grid.412554.3Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilnitrh 11, 602 00 Brno, Czech Republic
| | - Ewa Sumelka
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Dorota Bukowska
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Paweł Antosik
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Klaus P. Brüssow
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Małgorzata Bruska
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Michał Nowicki
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Maciej Zabel
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Bartosz Kempisty
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| |
Collapse
|
6
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
7
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1143] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
8
|
Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW. Gremlin1 induces anterior–posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 2015; 138 Pt 3:256-67. [DOI: 10.1016/j.mod.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
|
9
|
Jourdeuil KA, Hammer CL, Franz-Odendaal TA. A comparative analysis of chick culturing methods on skeletogenesis. Anat Rec (Hoboken) 2015; 298:810-9. [PMID: 25641825 DOI: 10.1002/ar.23117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/23/2014] [Indexed: 01/19/2023]
Abstract
Chick embryos are desirable models for the study of developmental biology. Despite this, there are very few studies that examine the effect of different culturing methods on skeletogenesis, specifically, intramembranous and endochondral bones. This study presents a detailed description of these effects by comparing two different culturing methods: windowed (in the shell) eggs and ex-ovo or shell-less culturing to normal development. Using whole mount bone staining, we determined that there is no significant difference in the length of the ossified region of intramembranous and endochondral bones in control versus window cultured embryos. However, these bones are significantly underossified in shell-less embryos. Shell-less embryos also exhibit abnormalities in endochondral bones. Intramembranous bones, interestingly, are morphologically normal in shell-less embryos. This study provides the first detailed description of ossification in window (in-ovo) and shell-less (ex-ovo) cultured embryos compared with controls (in-ovo). Patterning of the skeleton is unaffected regardless of culturing method. We conclude that studies involving endochondral bones should not utilise shell-less culturing methods. This data has been lacking in the literature and will serve as an important resource for those using cultured chick embryos in the study of skeletogenesis.
Collapse
Affiliation(s)
- Karyn A Jourdeuil
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada; Department of Biology, Mount Saint Vincent University, Halifax, NS, Canada
| | | | | |
Collapse
|