1
|
Selleri L, Rijli FM. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. Nat Rev Genet 2023; 24:610-626. [PMID: 37095271 DOI: 10.1038/s41576-023-00594-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Major differences in facial morphology distinguish vertebrate species. Variation of facial traits underlies the uniqueness of human individuals, and abnormal craniofacial morphogenesis during development leads to birth defects that significantly affect quality of life. Studies during the past 40 years have advanced our understanding of the molecular mechanisms that establish facial form during development, highlighting the crucial roles in this process of a multipotent cell type known as the cranial neural crest cell. In this Review, we discuss recent advances in multi-omics and single-cell technologies that enable genes, transcriptional regulatory networks and epigenetic landscapes to be closely linked to the establishment of facial patterning and its variation, with an emphasis on normal and abnormal craniofacial morphogenesis. Advancing our knowledge of these processes will support important developments in tissue engineering, as well as the repair and reconstruction of the abnormal craniofacial complex.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| | - Filippo M Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Jensen M, Chandrasekaran V, García-Bonete MJ, Li S, Anindya AL, Andersson K, Erlandsson MC, Oparina NY, Burmann BM, Brath U, Panchenko AR, Bokarewa I. M, Katona G. Survivin prevents the polycomb repressor complex 2 from methylating histone 3 lysine 27. iScience 2023; 26:106976. [PMID: 37534134 PMCID: PMC10391610 DOI: 10.1016/j.isci.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 08/04/2023] Open
Abstract
This study investigates the role of survivin in epigenetic control of gene transcription through interaction with the polycomb repressive complex 2 (PRC2). PRC2 is responsible for silencing gene expression by trimethylating lysine 27 on histone 3. We observed differential expression of PRC2 subunits in CD4+ T cells with varying levels of survivin expression, and ChIP-seq results indicated that survivin colocalizes with PRC2 along DNA. Inhibition of survivin resulted in a significant increase in H3K27 trimethylation, implying that survivin prevents PRC2 from functioning. Peptide microarray showed that survivin interacts with peptides from PRC2 subunits, and machine learning revealed that amino acid composition contains relevant information for predicting survivin interaction. NMR and BLI experiments supported the interaction of survivin with PRC2 subunit EZH2. Finally, protein-protein docking revealed that the survivin-EZH2 interaction interface overlaps with catalytic residues of EZH2, potentially inhibiting its H3K27 methylation activity. These findings suggest that survivin inhibits PRC2 function.
Collapse
Affiliation(s)
- Maja Jensen
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - María-José García-Bonete
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Atsarina Larasati Anindya
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Karin Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - Nina Y. Oparina
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ulrika Brath
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Anna R. Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Maria Bokarewa I.
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gröna stråket 16, 41346 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| |
Collapse
|
3
|
Liu B, Liu W, Zhao S, Ma L, Zang T, Huang C, Shu K, Gao H, Tang X. Transcriptome sequencing of facial adipose tissue reveals alterations in mRNAs of hemifacial microsomia. Front Pediatr 2023; 11:1099841. [PMID: 36861077 PMCID: PMC9968928 DOI: 10.3389/fped.2023.1099841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Hemifacial microsomia (HFM) is a common congenital malformation of the craniofacial region, including mandibular hypoplasia, microtia, facial palsy and soft tissue deficiencies. However, it remains unclear which specific genes are involved in the pathogenesis of HFM. By identifying differentially expressed genes (DEGs) in deficient facial adipose tissue from HFM patients, we hope to provide a new insight into disease mechanisms from the transcriptome perspective. RNA sequencing (RNA-Seq) was performed with 10 facial adipose tissues from patients of HFM and healthy controls. Differentially expressed genes in HFM were validated by quantitative real-time PCR (qPCR). Functional annotations of the DEGs were analyzed with DESeq2 R package (1.20.0). A total of 1,244 genes were identified as DEGs between HFM patients and matched controls. Bioinformatic analysis predicted that the increased expression of HOXB2 and HAND2 were associated with facial deformity of HFM. Knockdown and overexpression of HOXB2 were achieved with lentiviral vectors. Cell proliferation, migration, and invasion assay was performed with adipose-derived stem cells (ADSC) to confirm the phenotype of HOXB2. We also found that PI3K-Akt signaling pathway and human papillomavirus infection were activated in HFM. In conclusion, we discovered potential genes, pathways and networks in HFM facial adipose tissue, which contributes to a better understanding of the pathogenesis of HFM.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanbaga Zhao
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lunkun Ma
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianying Zang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changjin Huang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaiyi Shu
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiaojun Tang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
5
|
Li X, Chen S, Zhu Y, Fei J, Song L, Sun G, Niu W, Guo L, Wang J. Comprehensive bioinformatics analyses identified Homeobox B9 as a potential prognostic biomarker and therapeutic target for gastric cancer. J Gastrointest Oncol 2021; 12:2132-2149. [PMID: 34790380 DOI: 10.21037/jgo-21-598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background The Homeobox B (HOXB) family promotes tumor progression, but the mechanism of its action in gastric cancer (GC) is unclear. We sought to identify the HOXB family members that are critical to the prognosis of GC patients. Methods The Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, UALCAN, Kaplan-Meier plotter, and the GeneMANIA databases were used to analyze the messenger RNA (mRNA) expression levels, prognostic value, and gene-gene interaction network of the HOXB9 family members in GC. The expression of HOXB9 in GC and its relationship with various clinicopathological parameters and the prognosis of patients were verified by immunohistochemistry. Results The expression of HOXB3, HOXB5, HOXB6, HOXB7, HOXB9, and HOXB13 mRNA was significantly upregulated in GC. There was a significant correlation between the upregulation of HOXB3, HOXB5, and HOXB9 mRNA and a low overall survival (OS) rate. The high expression of HOXB7, HOXB9, and HOXB13 mRNA was closely correlated to tumor grade and stage. HOXB9 was the HOXB family member most closely related to the occurrence and development of GC. A further analysis showed that HOXB9 might be involved in deoxyribonucleic acid repair and division regulation. A validation study showed that the advanced cancer group had a higher level of HOXB9 expression than the early cancer group. The high expression of HOXB9 in gastric tissue plays an important role in the survival and prognosis of GC patients. Conclusions HOXB family members have different degrees of abnormal expression in GC. High HOXB9 expression in GC tissues was significantly correlated with a worse prognosis. Thus, HOXB9 is a potential novel biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shujia Chen
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yinghui Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayue Fei
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liaoyuan Song
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guoyan Sun
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Niu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiwei Wang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
6
|
Cheng X, Shi B, Li J. Distinct Embryonic Origin and Injury Response of Resident Stem Cells in Craniofacial Muscles. Front Physiol 2021; 12:690248. [PMID: 34276411 PMCID: PMC8281086 DOI: 10.3389/fphys.2021.690248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Craniofacial muscles emerge as a developmental novelty during the evolution from invertebrates to vertebrates, facilitating diversified modes of predation, feeding and communication. In contrast to the well-studied limb muscles, knowledge about craniofacial muscle stem cell biology has only recently starts to be gathered. Craniofacial muscles are distinct from their counterparts in other regions in terms of both their embryonic origin and their injury response. Compared with somite-derived limb muscles, pharyngeal arch-derived craniofacial muscles demonstrate delayed myofiber reconstitution and prolonged fibrosis during repair. The regeneration of muscle is orchestrated by a blended source of stem/progenitor cells, including myogenic muscle satellite cells (MuSCs), mesenchymal fibro-adipogenic progenitors (FAPs) and other interstitial progenitors. Limb muscles host MuSCs of the Pax3 lineage, and FAPs from the mesoderm, while craniofacial muscles have MuSCs of the Mesp1 lineage and FAPs from the ectoderm-derived neural crest. Both in vivo and in vitro data revealed distinct patterns of proliferation and differentiation in these craniofacial muscle stem/progenitor cells. Additionally, the proportion of cells of different embryonic origins changes throughout postnatal development in the craniofacial muscles, creating a more dynamic niche environment than in other muscles. In-depth comparative studies of the stem cell biology of craniofacial and limb muscles might inspire the development of novel therapeutics to improve the management of myopathic diseases. Based on the most up-to-date literature, we delineated the pivotal cell populations regulating craniofacial muscle repair and identified clues that might elucidate the distinct embryonic origin and injury response in craniofacial muscle cells.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
8
|
Yamada K, Maeno A, Araki S, Kikuchi M, Suzuki M, Ishizaka M, Satoh K, Akama K, Kawabe Y, Suzuki K, Kobayashi D, Hamano N, Kawamura A. An atlas of seven zebrafish hox cluster mutants provides insights into sub/neofunctionalization of vertebrate Hox clusters. Development 2021; 148:269044. [PMID: 34096572 DOI: 10.1242/dev.198325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Vertebrate Hox clusters are comprised of multiple Hox genes that control morphology and developmental timing along multiple body axes. Although results of genetic analyses using Hox-knockout mice have been accumulating, genetic studies in other vertebrates have not been sufficient for functional comparisons of vertebrate Hox genes. In this study, we isolated all of the seven hox cluster loss-of-function alleles in zebrafish using the CRISPR-Cas9 system. Comprehensive analysis of the embryonic phenotype and X-ray micro-computed tomography scan analysis of adult fish revealed several species-specific functional contributions of homologous Hox clusters along the appendicular axis, whereas important shared general principles were also confirmed, as exemplified by serial anterior vertebral transformations along the main body axis, observed in fish for the first time. Our results provide insights into discrete sub/neofunctionalization of vertebrate Hox clusters after quadruplication of the ancient Hox cluster. This set of seven complete hox cluster loss-of-function alleles provide a formidable resource for future developmental genetic analysis of the Hox patterning system in zebrafish.
Collapse
Affiliation(s)
- Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Akiteru Maeno
- Plant Resource Development, Division of Genetic Resource Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Soh Araki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Morimichi Kikuchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Masato Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kagari Akama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Yuki Kawabe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kenya Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Daiki Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nanami Hamano
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
9
|
Schussler O, Gharibeh L, Mootoosamy P, Murith N, Tien V, Rougemont AL, Sologashvili T, Suuronen E, Lecarpentier Y, Ruel M. Cardiac Neural Crest Cells: Their Rhombomeric Specification, Migration, and Association with Heart and Great Vessel Anomalies. Cell Mol Neurobiol 2021; 41:403-429. [PMID: 32405705 PMCID: PMC11448677 DOI: 10.1007/s10571-020-00863-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Outflow tract abnormalities are the most frequent congenital heart defects. These are due to the absence or dysfunction of the two main cell types, i.e., neural crest cells and secondary heart field cells that migrate in opposite directions at the same stage of development. These cells directly govern aortic arch patterning and development, ascending aorta dilatation, semi-valvular and coronary artery development, aortopulmonary septation abnormalities, persistence of the ductus arteriosus, trunk and proximal pulmonary arteries, sub-valvular conal ventricular septal/rotational defects, and non-compaction of the left ventricle. In some cases, depending on the functional defects of these cells, additional malformations are found in the expected spatial migratory area of the cells, namely in the pharyngeal arch derivatives and cervico-facial structures. Associated non-cardiovascular anomalies are often underestimated, since the multipotency and functional alteration of these cells can result in the modification of multiple neural, epidermal, and cervical structures at different levels. In most cases, patients do not display the full phenotype of abnormalities, but congenital cardiac defects involving the ventricular outflow tract, ascending aorta, aortic arch and supra-aortic trunks should be considered as markers for possible impaired function of these cells. Neural crest cells should not be considered as a unique cell population but on the basis of their cervical rhombomere origins R3-R5 or R6-R7-R8 and specific migration patterns: R3-R4 towards arch II, R5-R6 arch III and R7-R8 arch IV and VI. A better understanding of their development may lead to the discovery of unknown associated abnormalities, thereby enabling potential improvements to be made to the therapeutic approach.
Collapse
Affiliation(s)
- Olivier Schussler
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland.
- Cardiovascular Research Laboratory, Faculty of Medicine of the University of Geneva, Rue Michel Servet 1, 1211, Geneva 4, Switzerland.
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Parmeseeven Mootoosamy
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Nicolas Murith
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Vannary Tien
- Department of Pathology and Immunology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | | | - Tornike Sologashvili
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Erik Suuronen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| | | | - Marc Ruel
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| |
Collapse
|
10
|
Li N, Gou JH, Xiong J, You JJ, Li ZY. HOXB4 promotes the malignant progression of ovarian cancer via DHDDS. BMC Cancer 2020; 20:222. [PMID: 32178630 PMCID: PMC7077141 DOI: 10.1186/s12885-020-06725-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Homeobox B4 (HOXB4) is correlated with poor prognosis of various cancer types. However, how HOXB4 promotes ovarian cancer (OV) progression remains unclear. Methods The Cancer Genome Atlas (TCGA) database indicated that a high level of HOXB4 in OV was correlated with poor prognosis. The biological functions of HOXB4 were confirmed by colony formation, migration, and invasion assays. The effect of HOXB4 on the expression of EMT cell markers was determined. The transcriptional target of HOXB4 was DHDDS, which was detected by a ChIP assay. A xenograft tumor model was generated in nude mice to detect the role of HOXB4 in tumor proliferation and metastasis. Results The results showed that HOXB4 protein levels were higher in OV tissues than in normal tissues and correlated with poor prognosis of OV. HOXB4 reduction inhibited the proliferation and invasion ability of OV cells in vitro. Conversely, these effects were enhanced by the upregulation of HOXB4 in OV cells. The binding of HOXB4 to two DNA motifs regulated DHDDS expression and contributed to the malignant progression of OV. The role of HOXB4 in contributing to tumor development in vivo was verified in mice. Further results indicated that HOXB4 induced Snail and Zeb1 expression. Conclusion Overall, HOXB4 overexpression was remarkably correlated with poor prognosis of OV. Mechanistically, HOXB4 enhances the proliferation and invasion of tumor cells by activating DHDDS, thereby promoting the malignant progression of OV.
Collapse
Affiliation(s)
- Na Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.,Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Jin-Hai Gou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jiao Xiong
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Juan-Juan You
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Zheng-Yu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
11
|
Sekiguchi R, Martin D, Yamada KM. Single-Cell RNA-seq Identifies Cell Diversity in Embryonic Salivary Glands. J Dent Res 2019; 99:69-78. [PMID: 31644367 DOI: 10.1177/0022034519883888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Branching organs, including the salivary and mammary glands, lung, and kidney, arise as epithelial buds that are morphologically very similar. However, the mesenchyme is known to guide epithelial morphogenesis and to help govern cell fate and eventual organ specificity. We performed single-cell transcriptome analyses of 14,441 cells from embryonic day 12 submandibular and parotid salivary glands to characterize their molecular identities during bud initiation. The mesenchymal cells were considerably more heterogeneous by clustering analysis than the epithelial cells. Nonetheless, distinct clusters were evident among even the epithelial cells, where unique molecular markers separated presumptive bud and duct cells. Mesenchymal cells formed separate, well-defined clusters specific to each gland. Neuronal and muscle cells of the 2 glands in particular showed different markers and localization patterns. Several gland-specific genes were characteristic of different rhombomeres. A muscle cluster was prominent in the parotid, which was not myoepithelial or vascular smooth muscle. Instead, the muscle cluster expressed genes that mediate skeletal muscle differentiation and function. Striated muscle was indeed found later in development surrounding the parotid gland. Distinct spatial localization patterns of neuronal and muscle cells in embryonic stages appear to foreshadow later differences in adult organ function. These findings demonstrate that the establishment of transcriptional identities emerges early in development, primarily in the mesenchyme of developing salivary glands. We present the first comprehensive description of molecular signatures that define specific cellular landmarks for the bud initiation stage, when the neural crest-derived ectomesenchyme predominates in the salivary mesenchyme that immediately surrounds the budding epithelium. We also provide the first transcriptome data for the largely understudied embryonic parotid gland as compared with the submandibular gland, focusing on the mesenchymal cell populations.
Collapse
Affiliation(s)
- R Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - D Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | -
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - K M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Manocha S, Farokhnia N, Khosropanah S, Bertol JW, Santiago J, Fakhouri WD. Systematic review of hormonal and genetic factors involved in the nonsyndromic disorders of the lower jaw. Dev Dyn 2019; 248:162-172. [PMID: 30576023 DOI: 10.1002/dvdy.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mandibular disorders are among the most common birth defects in humans, yet the etiological factors are largely unknown. Most of the neonates affected by mandibular abnormalities have a sequence of secondary anomalies, including airway obstruction and feeding problems, that reduce the quality of life. In the event of lacking corrective surgeries, patients with mandibular congenital disorders suffer from additional lifelong problems such as sleep apnea and temporomandibular disorders, among others. The goal of this systematic review is to gather evidence on hormonal and genetic factors that are involved in signaling pathways and interactions that are potentially associated with the nonsyndromic mandibular disorders. We found that members of FGF and BMP pathways, including FGF8/10, FGFR2/3, BMP2/4/7, BMPR1A, ACVR1, and ACVR2A/B, have a prominent number of gene-gene interactions among all identified genes in this review. Gene ontology of the 154 genes showed that the functional gene sets are involved in all aspects of cellular processes and organogenesis. Some of the genes identified by the genome-wide association studies of common mandibular disorders are involved in skeletal formation and growth retardation based on animal models, suggesting a potential direct role as genetic risk factors in the common complex jaw disorders. Developmental Dynamics 248:162-172, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srishti Manocha
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nadia Farokhnia
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sepideh Khosropanah
- Ostrow School of Dentistry, University of Southern California, California, Los Angeles
| | - Jessica W Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Joel Santiago
- Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, Jardim Brasil, Bauru, Sao Paulo, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
13
|
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev Biol 2018; 444 Suppl 1:S67-S78. [PMID: 29571614 DOI: 10.1016/j.ydbio.2018.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.
Collapse
|
14
|
Cortical gene expression correlates of temporal lobe epileptogenicity. ACTA ACUST UNITED AC 2016; 23:181-90. [PMID: 27354343 DOI: 10.1016/j.pathophys.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being one of the most common neurological diseases, it is unknown whether there may be a genetic basis to temporal lobe epilepsy (TLE). Whole genome analyses were performed to test the hypothesis that temporal cortical gene expression differs between TLE patients with high vs. low baseline seizure frequency. METHODS Baseline seizure frequency was used as a clinical measure of epileptogenicity. Twenty-four patients in high or low seizure frequency groups (median seizures/month) underwent anterior temporal lobectomy with amygdalohippocampectomy for intractable TLE. RNA was isolated from the lateral temporal cortex and submitted for expression analysis. Genes significantly associated with baseline seizure frequency on likelihood ratio test were identified based on >0.90 area under the ROC curve, P value of <0.05. RESULTS Expression levels of forty genes were significantly associated with baseline seizure frequency. Of the seven most significant, four have been linked to other neurologic diseases. Expression levels associated with high seizure frequency included low expression of Homeobox A10, Forkhead box A2, Lymphoblastic leukemia derived sequence 1, HGF activator, Kelch repeat and BTB (POZ) domain containing 11, Thanatos-associated protein domain containing 8 and Heparin sulfate (glucosamine) 3-O-sulfotransferase 3A1. CONCLUSIONS This study describes novel associations between forty known genes and a clinical marker of epileptogenicity, baseline seizure frequency. Four of the seven discussed have been previously related to other neurologic diseases. Future investigation of these genes could establish new biomarkers for predicting epileptogenicity, and could have significant implications for diagnosis and management of temporal lobe epilepsy, as well as epilepsy pathogenesis.
Collapse
|
15
|
McEllin JA, Alexander TB, Tümpel S, Wiedemann LM, Krumlauf R. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution. Dev Biol 2016; 409:530-42. [DOI: 10.1016/j.ydbio.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
|
16
|
Xie H, Zhu D, Xu C, Zhu H, Chen P, Li H, Liu X, Xia Y, Tang W. Long none coding RNA HOTTIP/HOXA13 act as synergistic role by decreasing cell migration and proliferation in Hirschsprung disease. Biochem Biophys Res Commun 2015; 463:569-574. [PMID: 26043692 DOI: 10.1016/j.bbrc.2015.05.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to be associated with various human diseases. However, whether they are associated with Hirschsprung disease (HSCR) progression remains unclear. In this study, we designed the experiment to explore the relationship between lncRNA HOTTIP and HOXA13, and their pathogenicity to HSCR. Quantitative real-time PCR and Western blot were performed to detect the levels of lncRNA, mRNAs, and proteins in colon tissues from 79 patients with HSCR and 79 controls. Small RNA interference transfection was used to study the function experiments in human 293T and SK-N-BE cell lines. The cell viability and activities were detected by the transwell assays, CCK8 assay, and flow cytometry, respectively. LncRNA HOTTIP and HOXA13 were significantly down-regulated in HSCR compared to the controls. Meanwhile, the declined extent of their expression levels makes sense between two main phenotype of HSCR. SiRNA-mediated knock-down of HOTTIP or HOXA13 correlated with decreased levels of each other and both reduced the cell migration and proliferation without affecting cell apoptosis or cell cycle. Our study demonstrates that aberrant reduction of HOTTIP and HOXA13, which have a bidirectional regulatory loop, may play an important role in the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Hua Xie
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China
| | - Dongmei Zhu
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China
| | - Cao Xu
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China
| | - Hairong Zhu
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China
| | - Pingfa Chen
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China
| | - Hongxing Li
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China
| | - Xiang Liu
- Department of Pediatric Surgery, Anhui Provincial Children's Hospital, Anhui 230000, China
| | - Yankai Xia
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China
| | - Weibing Tang
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166, China.
| |
Collapse
|
17
|
Rochtus A, Izzi B, Vangeel E, Louwette S, Wittevrongel C, Lambrechts D, Moreau Y, Winand R, Verpoorten C, Jansen K, Van Geet C, Freson K. DNA methylation analysis of Homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects. Epigenetics 2015; 10:92-101. [PMID: 25565354 DOI: 10.1080/15592294.2014.998531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9-16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways.
Collapse
Affiliation(s)
- Anne Rochtus
- a Department of Cardiovascular Sciences; Center for Molecular and Vascular Biology ; University of Leuven ; Leuven , Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hox transcription factors: modulators of cell-cell and cell-extracellular matrix adhesion. BIOMED RESEARCH INTERNATIONAL 2014; 2014:591374. [PMID: 25136598 PMCID: PMC4127299 DOI: 10.1155/2014/591374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 01/14/2023]
Abstract
Hox genes encode homeodomain-containing transcription factors that determine cell and tissue identities in the embryo during development. Hox genes are also expressed in various adult tissues and cancer cells. In Drosophila, expression of cell adhesion molecules, cadherins and integrins, is regulated by Hox proteins operating in hierarchical molecular pathways and plays a crucial role in segment-specific organogenesis. A number of studies using mammalian cultured cells have revealed that cell adhesion molecules responsible for cell-cell and cell-extracellular matrix interactions are downstream targets of Hox proteins. However, whether Hox transcription factors regulate expression of cell adhesion molecules during vertebrate development is still not fully understood. In this review, the potential roles Hox proteins play in cell adhesion and migration during vertebrate body patterning are discussed.
Collapse
|
19
|
Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 2013; 80:12-34. [PMID: 24094100 DOI: 10.1016/j.neuron.2013.09.020] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.
Collapse
Affiliation(s)
- Polyxeni Philippidou
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|