1
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Liu H, Hilliard S, Kelly E, Chen CH, Saifudeen Z, El-Dahr SS. The polycomb proteins EZH1 and EZH2 co-regulate chromatin accessibility and nephron progenitor cell lifespan in mice. J Biol Chem 2020; 295:11542-11558. [PMID: 32554463 DOI: 10.1074/jbc.ra120.013348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/09/2020] [Indexed: 01/20/2023] Open
Abstract
SIX2 (SIX homeobox 2)-positive nephron progenitor cells (NPCs) give rise to all epithelial cell types of the nephron, the filtering unit of the kidney. NPCs have a limited lifespan and are depleted near the time of birth. Epigenetic factors are implicated in the maintenance of organ-restricted progenitors such as NPCs, but the chromatin-based mechanisms are incompletely understood. Here, using a combination of gene targeting, chromatin profiling, and single-cell RNA analysis, we examined the role of the murine histone 3 Lys-27 (H3K27) methyltransferases EZH1 (enhancer of zeste 1) and EZH2 in NPC maintenance. We found that EZH2 expression correlates with NPC growth potential and that EZH2 is the dominant H3K27 methyltransferase in NPCs and epithelial descendants. Surprisingly, NPCs lacking H3K27 trimethylation maintained their progenitor state but cycled slowly, leading to a smaller NPC pool and formation of fewer nephrons. Unlike Ezh2 loss of function, dual inactivation of Ezh1 and Ezh2 triggered overexpression of the transcriptional repressor Hes-related family BHLH transcription factor with YRPW motif 1 (Hey1), down-regulation of Six2, and unscheduled activation of Wnt4-driven differentiation, resulting in early termination of nephrogenesis and severe renal dysgenesis. Double-mutant NPCs also overexpressed the SIX family member Six1 However, in this context, SIX1 failed to maintain NPC stemness. At the chromatin level, EZH1 and EZH2 restricted accessibility to AP-1-binding motifs, and their absence promoted a regulatory landscape akin to differentiated and nonlineage cells. We conclude that EZH2 is required for NPC renewal potential and that tempering of the differentiation program requires cooperation of both EZH1 and EZH2.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sylvia Hilliard
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth Kelly
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Obstetrics & Gynecology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Chao-Hui Chen
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zubaida Saifudeen
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Hilliard SA, Li Y, Dixon A, El-Dahr SS. Mdm4 controls ureteric bud branching via regulation of p53 activity. Mech Dev 2020; 163:103616. [PMID: 32464196 DOI: 10.1016/j.mod.2020.103616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
The antagonism between Mdm2 and its close homolog Mdm4 (also known as MdmX) and p53 is vital for embryogenesis and organogenesis. Previously, we demonstrated that targeted disruption of Mdm2 in the Hoxb7+ ureteric bud (Ub) lineage, which gives rise to the renal collecting system, causes renal hypodysplasia culminating in perinatal lethality. In this study, we examine the unique role of Mdm4 in establishing the collecting duct system of the murine kidney. Hoxb7Cre driven loss of Mdm4 in the Ub lineage (UbMdm4-/-) disrupts branching morphogenesis and triggers UB cell apoptosis. UbMdm4-/- kidneys exhibit abnormally dilated Ub tips while the medulla is hypoplastic. These structural alterations result in secondary depletion of nephron progenitors and nascent nephrons. As a result, newborn UbMdm4-/- mice have hypo-dysplastic kidneys. Transcriptional profiling revealed downregulation of the Ret-tyrosine kinase pathway components, Gdnf, Wnt11, Sox8, Etv4 and Cxcr4 in the UbMdm4-/- mice relative to controls. Moreover, the expression levels of the canonical Wnt signaling members Axin2 and Wnt9b are downregulated. Mdm4 deletion upregulated p53 activity and p53-target gene expression including Cdkn1a (p21), Gdf15, Ccng1, PERP, and Fas. Germline loss of p53 in UbMdm4-/- mice largely rescues kidney development and terminal differentiation of the collecting duct. We conclude that Mdm4 plays a unique and vital role in Ub branching morphogenesis and collecting system development.
Collapse
Affiliation(s)
- Sylvia A Hilliard
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Yuwen Li
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Angelina Dixon
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Samir S El-Dahr
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America.
| |
Collapse
|
4
|
Chen Y, Yan R, Li B, Liu J, Liu X, Song W, Zhu C. Silencing CCNG1 protects MPC-5 cells from high glucose-induced proliferation-inhibition and apoptosis-promotion via MDM2/p53 signaling pathway. Int Urol Nephrol 2020; 52:581-593. [PMID: 32016904 DOI: 10.1007/s11255-020-02383-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus and one of the most important causes of end-stage renal disease, but its pathogenesis has not been elucidated so far, and there is no effective treatment. METHODS DN models of rats and MPC-5 cells were established with streptozotocin (STZ) and high glucose (HG) in vivo and in vitro, respectively. Cell markers desmin and nephrin in foot kidney tissue were detected by Western blot. CCNG1 level in vitro was analyzed by Western blot and immunohistochemistry. CCK-8 assay and flow cytometry were conducted to analyze the effect of CCNG1 on HG-treated MPC-5 cells. Apoptosis-related proteins (Bcl-2, Bax and p53), CCNG1, and MDM2 were determined by RT-qPCR and Western blot. RESULTS The level of nephrin was decreased, while desmin was increased in STZ-induced DN rats and CCNG1 level was also enhanced by STZ. In vitro experiments indicated that MPC-5 cell viability was inhibited and apoptosis was induced by HG and we also found that CCNG1 expression was up-regulated by HG and negatively correlated with MDM2 level. The effects of HG on MPC-5 cell viability, apoptosis, and cell cycle were reversed by silencing CCNG1, but further deteriorated by overexpression of CCNG1. Furthermore, overexpression of MDM2 inhibited HG-induced MPC-5 cell injury and CCNG1 expression. CONCLUSIONS These findings revealed that down-regulation of CCNG1 has protection effects in DN that is mechanistically linked to MDM2-p53 pathways.
Collapse
Affiliation(s)
- Ye Chen
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Bo Li
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Jun Liu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Xiaoxia Liu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Wenyu Song
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Chunling Zhu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
5
|
|
6
|
Singh S, Vaughan CA, Rabender C, Mikkelsen R, Deb S, Palit Deb S. DNA replication in progenitor cells and epithelial regeneration after lung injury requires the oncoprotein MDM2. JCI Insight 2019; 4:128194. [PMID: 31527309 PMCID: PMC6824310 DOI: 10.1172/jci.insight.128194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Depletion of epithelial cells after lung injury prompts proliferation and epithelial mesenchymal transition (EMT) of progenitor cells, and this repopulates the lost epithelial layer. To investigate the cell proliferative function of human oncoprotein MDM2, we generated mouse models targeting human MDM2 expression in either lung Club or alveolar cells after doxycycline treatment. We report that MDM2 expression in lung Club or alveolar cells activates DNA replication specifically in lung progenitor cells only after chemical- or radiation-induced lung injury, irrespective of their p53 status. Activation of DNA replication by MDM2 triggered by injury leads to proliferation of lung progenitor cells and restoration of the lost epithelial layers. Mouse lung with no Mdm2 allele loses its ability to replicate DNA, whereas loss of 1 Mdm2 allele compromises this function, demonstrating the requirement of endogenous MDM2. We show that the p53-independent ability of MDM2 to activate Akt signaling is essential for initiating DNA replication in lung progenitor cells. Furthermore, MDM2 activates the Notch signaling pathway and expression of EMT markers, indicative of epithelial regeneration. This is the first report to our knowledge demonstrating a direct p53-independent participation of MDM2 in progenitor cell proliferation and epithelial repair after lung injury, distinct from a p53-degrading antiapoptotic effect preventing injury.
Collapse
Affiliation(s)
- Shilpa Singh
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| | | | - Christopher Rabender
- VCU Massey Cancer Center, and
- Department of Radiation Oncology, Virginia Commonwealth, University, Richmond, Virginia, USA
| | - Ross Mikkelsen
- VCU Massey Cancer Center, and
- Department of Radiation Oncology, Virginia Commonwealth, University, Richmond, Virginia, USA
| | - Sumitra Deb
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| | - Swati Palit Deb
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| |
Collapse
|
7
|
Song R, Kidd L, Janssen A, Yosypiv IV. Conditional ablation of the prorenin receptor in nephron progenitor cells results in developmental programming of hypertension. Physiol Rep 2019; 6:e13644. [PMID: 29611334 PMCID: PMC5880790 DOI: 10.14814/phy2.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/15/2023] Open
Abstract
Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells (NPCs) of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump V‐ATPase. Previously, we demonstrated that conditional ablation of the PRR in Six2+NPCs in mice (Six2PRR−/−) causes early neonatal death. Here, we identified genes that are regulated by PRR in Six2+NPCs FACS‐isolated from Six2PRR−/− and control kidneys on embryonic day E15.5 using whole‐genome expression analysis. Seven genes with expression in CM cells previously shown to direct kidney development, including Notch1, β‐catenin, Lef1, Lhx1, Jag1, and p53, were downregulated. The functional groups within the downregulated gene set included genes involved in embryonic and cellular development, renal regeneration, cellular assembly and organization, cell morphology, death and survival. Double‐transgenic Six2PRR−/−/BatGal+ mice, a reporter strain for β‐catenin transcriptional activity, showed decreased β‐catenin activity in the UB in vivo. Reduced PRR gene dosage in heterozygous Six2PRR+/− mice was associated with decreased glomerular number, segmental thickening of the glomerular basement membrane with focal podocyte foot process effacement, development of hypertension and increased soluble PRR (sPRR) levels in the urine at 2 months of age. Together, these data demonstrate that NPC PRR performs essential functions during nephrogenesis via control of hierarchy of genes that regulate critical cellular processes. Both reduced nephron endowment and augmented urine sPRR likely contribute to programming of hypertension in Six2PRR+/− mice.
Collapse
Affiliation(s)
- Renfang Song
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Los Angeles
| | - Laura Kidd
- Department of Pathology, Tulane University School of Medicine, New Orleans, Los Angeles
| | - Adam Janssen
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Los Angeles
| | - Ihor V Yosypiv
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Los Angeles
| |
Collapse
|
8
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Higgins SP, Tang Y, Higgins CE, Mian B, Zhang W, Czekay RP, Samarakoon R, Conti DJ, Higgins PJ. TGF-β1/p53 signaling in renal fibrogenesis. Cell Signal 2017; 43:1-10. [PMID: 29191563 DOI: 10.1016/j.cellsig.2017.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 01/04/2023]
Abstract
Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are associated with significant morbidity and mortality. Effective therapies to prevent or curtail the advancement to organ failure, however, remain a major clinical challenge. Chronic kidney disease, in particular, constitutes an increasing medical burden affecting >15% of the US population. Regardless of etiology (diabetes, hypertension, ischemia, acute injury, urologic obstruction), persistently elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling networks and disease progression. TGF-β1 is the principal driver of renal fibrogenesis, a dynamic pathophysiologic process that involves tubular cell injury/apoptosis, infiltration of inflammatory cells, interstitial fibroblast activation and excess extracellular matrix synthesis/deposition leading to impaired kidney function and, eventually, to chronic and end-stage disease. TGF-β1 activates the ALK5 type I receptor (which phosphorylates SMAD2/3) as well as non-canonical (e.g., src kinase, EGFR, JAK/STAT, p53) pathways that collectively drive the fibrotic genomic program. Such multiplexed signal integration has pathophysiological consequences. Indeed, TGF-β1 stimulates the activation and assembly of p53-SMAD3 complexes required for transcription of the renal fibrotic genes plasminogen activator inhibitor-1, connective tissue growth factor and TGF-β1. Tubular-specific ablation of p53 in mice or pifithrin-α-mediated inactivation of p53 prevents epithelial G2/M arrest, reduces the secretion of fibrotic effectors and attenuates the transition from acute to chronic renal injury, further supporting the involvement of p53 in disease progression. This review focuses on the pathophysiology of TGF-β1-initiated renal fibrogenesis and the role of p53 as a regulator of profibrotic gene expression.
Collapse
Affiliation(s)
- Stephen P Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Craig E Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Badar Mian
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Ralf-Peter Czekay
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - David J Conti
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; Division of Transplantation Surgery, Albany Medical College, Albany, NY 12208, United States.
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States; Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
10
|
El-Dahr S, Hilliard S, Saifudeen Z. Regulation of kidney development by the Mdm2/Mdm4-p53 axis. J Mol Cell Biol 2017; 9:26-33. [PMID: 28096292 PMCID: PMC5907835 DOI: 10.1093/jmcb/mjx005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/15/2017] [Indexed: 01/13/2023] Open
Abstract
While p53 activity is required for tumour suppression, unconstrained p53 activity on the other hand is detrimental to the organism, resulting in inappropriate cellular death or proliferation defects. Unimpeded p53 activity is lethal in the developing embryo, underlining the need for maintaining a tight control on p53 activity during this period. The critical role of the negative regulators of p53, Mdm2 and Mdm4, in vertebrate development came to light by fatal disruption of embryogenesis that was observed with Mdm2 and Mdm4 gene deletions in mice. Embryonic lethality was rescued only by superimposing p53 removal. Here we summarize the contribution of the Mdm2/Mdm4–p53 axis that occurs at multiple steps of kidney development. Conditional, cell type-specific deletions reveal distinct functions of these proteins in renal morphogenesis. The severe impact on the renal phenotype from targeted gene deletions underscores the critical role played by the Mdm2/Mdm4–p53 nexus on nephrogenesis, and emphasizes the need to monitor patients with aberrations in this pathway for kidney function defects and associated cardiovascular dysfunction.
Collapse
Affiliation(s)
- Samir El-Dahr
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sylvia Hilliard
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Lessel D, Wu D, Trujillo C, Ramezani T, Lessel I, Alwasiyah MK, Saha B, Hisama FM, Rading K, Goebel I, Schütz P, Speit G, Högel J, Thiele H, Nürnberg G, Nürnberg P, Hammerschmidt M, Zhu Y, Tong DR, Katz C, Martin GM, Oshima J, Prives C, Kubisch C. Dysfunction of the MDM2/p53 axis is linked to premature aging. J Clin Invest 2017; 127:3598-3608. [PMID: 28846075 DOI: 10.1172/jci92171] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor p53, a master regulator of the cellular response to stress, is tightly regulated by the E3 ubiquitin ligase MDM2 via an autoregulatory feedback loop. In addition to its well-established role in tumorigenesis, p53 has also been associated with aging in mice. Several mouse models with aberrantly increased p53 activity display signs of premature aging. However, the relationship between dysfunction of the MDM2/p53 axis and human aging remains elusive. Here, we have identified an antiterminating homozygous germline mutation in MDM2 in a patient affected by a segmental progeroid syndrome. We show that this mutation abrogates MDM2 activity, thereby resulting in enhanced levels and stability of p53. Analysis of the patient's primary cells, genome-edited cells, and in vitro and in vivo analyses confirmed the MDM2 mutation's aberrant regulation of p53 activity. Functional data from a zebrafish model further demonstrated that mutant Mdm2 was unable to rescue a p53-induced apoptotic phenotype. Altogether, our findings indicate that mutant MDM2 is a likely driver of the observed segmental form of progeria.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Danyi Wu
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Carlos Trujillo
- Genetics Unit, Dr. Erfan & Bagedo Hospital, Jeddah, Saudi Arabia
| | - Thomas Ramezani
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad K Alwasiyah
- Aziziah Maternity and Children's Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Bidisha Saha
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Katrin Rading
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Goebel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Schütz
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Günter Speit
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | | | | | - Peter Nürnberg
- Cologne Center for Genomics.,Center for Molecular Medicine Cologne, and.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, and.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Yan Zhu
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Medicine, Chiba University, Chiba, Japan
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Human Genetics, University of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Abstract
p53 is best identified as a tumor suppressor for its transcriptional control of genes involved in cell cycle progression and apoptosis. Beyond its irrefutable involvement in restraining unchecked cell proliferation, research over the past several years has indicated a requirement for p53 function in sustaining normal development. Here I summarize the role of p53 in embryonic development, with a focus on knowledge gained from p53 loss and overexpression during kidney development. In contrast to its classical role in suppressing proliferative pathways, p53 positively regulates nephron progenitor cell (NPC) renewal. Emerging evidence suggests p53 may control cell fate decisions by preserving energy metabolism homeostasis of progenitors in the nephrogenic niche. Maintaining a critical level of p53 function appears to be a prerequisite for optimal nephron endowment. Defining the molecular networks targeted by p53 in the NPC may well provide new targets not only for regenerative medicine but also for cancer treatment.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, 1430 Tulane Avenue, SL37, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Thomasova D, Ebrahim M, Fleckinger K, Li M, Molnar J, Popper B, Liapis H, Kotb AM, Siegerist F, Endlich N, Anders HJ. MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury. Cell Death Dis 2016; 7:e2482. [PMID: 27882940 PMCID: PMC5260907 DOI: 10.1038/cddis.2016.390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022]
Abstract
Murine double minute-2 (MDM2) is an E3-ubiquitin ligase and the main negative regulator of tumor suppressor gene p53. MDM2 has also a non-redundant function as a modulator of NF-kB signaling. As such it promotes proliferation and inflammation. MDM2 is highly expressed in the unchallenged tubular epithelial cells and we hypothesized that MDM2 is necessary for their survival and homeostasis. MDM2 knockdown by siRNA or by genetic depletion resulted in demise of tubular cells in vitro. This phenotype was completely rescued by concomitant knockdown of p53, thus suggesting p53 dependency. In vivo experiments in the zebrafish model demonstrated that the tubulus cells of the larvae undergo cell death after the knockdown of mdm2. Doxycycline-induced deletion of MDM2 in tubular cell-specific MDM2-knockout mice Pax8rtTa-cre; MDM2f/f caused acute kidney injury with increased plasma creatinine and blood urea nitrogen and sharp decline of glomerular filtration rate. Histological analysis showed massive swelling of renal tubular cells and later their loss and extensive tubular dilation, markedly in proximal tubules. Ultrastructural changes of tubular epithelial cells included swelling of the cytoplasm and mitochondria with the loss of cristae and their transformation in the vacuoles. The pathological phenotype of the tubular cell-specific MDM2-knockout mouse model was completely rescued by co-deletion of p53. Tubular epithelium compensates only partially for the cell loss caused by MDM2 depletion by proliferation of surviving tubular cells, with incomplete MDM2 deletion, but rather mesenchymal healing occurs. We conclude that MDM2 is a non-redundant survival factor for proximal tubular cells by protecting them from spontaneous p53 overexpression-related cell death.
Collapse
Affiliation(s)
- Dana Thomasova
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Martrez Ebrahim
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Kristina Fleckinger
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Moying Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Jakob Molnar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Ludwig-Maximilians Universität, Munich, Germany
| | - Helen Liapis
- Pathology & Immunology & Internal Medicine (Renal), Washington University, School of Medicine, St Louis, MO, USA
| | - Ahmed M Kotb
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der LMU München, Munich, Germany
| |
Collapse
|
14
|
Saito R, Rocanin-Arjo A, You YH, Darshi M, Van Espen B, Miyamoto S, Pham J, Pu M, Romoli S, Natarajan L, Ju W, Kretzler M, Nelson R, Ono K, Thomasova D, Mulay SR, Ideker T, D'Agati V, Beyret E, Belmonte JCI, Anders HJ, Sharma K. Systems biology analysis reveals role of MDM2 in diabetic nephropathy. JCI Insight 2016; 1:e87877. [PMID: 27777973 DOI: 10.1172/jci.insight.87877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. MDM2 had the highest significant number of PPI connections. As validation, significant downregulation of MDM2 gene expression was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, and increased mortality. Addition of Nutlin-3a decreased WT1+ cells in embryonic kidneys. Both podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers.
Collapse
Affiliation(s)
- Rintaro Saito
- Institute of Metabolomic Medicine.,Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Anaïs Rocanin-Arjo
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Young-Hyun You
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Manjula Darshi
- Institute of Metabolomic Medicine.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Benjamin Van Espen
- Institute of Metabolomic Medicine.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Satoshi Miyamoto
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Jessica Pham
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Minya Pu
- Institute of Metabolomic Medicine.,Department of Family Medicine and Epidemiology, UCSD, San Diego, California, USA
| | - Simone Romoli
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Loki Natarajan
- Institute of Metabolomic Medicine.,Department of Family Medicine and Epidemiology, UCSD, San Diego, California, USA
| | - Wenjun Ju
- Department of Internal Medicine, Nephrology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Nephrology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Keiichiro Ono
- Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Dana Thomasova
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA
| | - Vivette D'Agati
- Renal Pathology Laboratory, Columbia University, College of Physicians and Surgeons, Department of Pathology, New York, New York, USA
| | - Ergin Beyret
- Salk Institute for Biological Studies, San Diego, California, USA
| | | | - Hans Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Kumar Sharma
- Institute of Metabolomic Medicine.,Center for Renal Translational Medicine, Division of Nephrology-Hypertension.,Division of Medical Genetics, Department of Medicine, UCSD, San Diego, California, USA.,Veterans Affairs Health Systems, San Diego, California, USA
| |
Collapse
|
15
|
Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells. Development 2016; 142:1228-41. [PMID: 25804735 DOI: 10.1242/dev.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors.
Collapse
Affiliation(s)
- Yuwen Li
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jiao Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Wencheng Li
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Aaron Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | - Marilyn Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Carroll
- Department of Internal Medicine (Nephrology) and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Yumei Feng
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Minuth WW, Denk L. Special Morphological Features at the Interface of the Renal Stem/Progenitor Cell Niche Force to Reinvestigate Transport of Morphogens During Nephron Induction. Biores Open Access 2016; 5:49-60. [PMID: 26862472 PMCID: PMC4744892 DOI: 10.1089/biores.2015.0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formation of a nephron depends on reciprocal signaling of different morphogens between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Previously, it has been surmised that a close proximity exists between both involved cell types and that morphogens are transported between them by diffusion. However, actual morphological data illustrate that mesenchymal and epithelial stem/progenitor cell bodies are separated by a striking interface. Special fixation of specimens by glutaraldehyde (GA) solution including cupromeronic blue, ruthenium red, or tannic acid for electron microscopy depicts that the interface is not void but filled in extended areas by textured extracellular matrix. Surprisingly, projections of mesenchymal cells cross the interface to contact epithelial cells. At those sites the plasma membranes of a mesenchymal and an epithelial cell are connected via tunneling nanotubes. Regarding detected morphological features in combination with involved morphogens, their transport cannot longer be explained solely by diffusion. Instead, it has to be sorted according to biophysical properties of morphogens and to detected environment. Thus, the new working hypothesis is that morphogens with good solubility such as glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factors (FGFs) are transported by diffusion. Morphogens with minor solubility such as bone morphogenetic proteins (BMPs) are secreted and stored for delivery on demand in illustrated extracellular matrix. In contrast, morphogens with poor solubility such as Wnts are transported in mesenchymal cell projections along the plasma membrane or via illustrated tunneling nanotubes. However, the presence of an intercellular route between mesenchymal and epithelial stem/progenitor cells by tunneling nanotubes also makes it possible that all morphogens are transported this way.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg , Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg , Regensburg, Germany
| |
Collapse
|
17
|
Fanni D, Sanna A, Gerosa C, Puddu M, Faa G, Fanos V. Each niche has an actor: multiple stem cell niches in the preterm kidney. Ital J Pediatr 2015; 41:78. [PMID: 26472160 PMCID: PMC4608192 DOI: 10.1186/s13052-015-0187-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 03/13/2023] Open
Abstract
The preterm kidney cannot be simply considered as a kidney small in size: as compared to the adult kidney, the developing organ of the preterm infant is characterized by marked differences regarding the architecture and cell components. At macroscopy, fine linear demarcations indenting the renal surface characterize the fetal and preterm kidney. At microscopy, multiple major architectural changes differentiate the developing kidney from the adult one: a large capsule with a high cellularity; the branching ureteric bud, extending from the hilum towards the renal capsule; striking morphological differences among superficial (just born) and deep (more mature) glomeruli; persistence of remnants of the metanephric mesenchyme in the hylum; incomplete differentiation of developing proximal and distal tubules. At cellular level, kidneys of preterm infants are characterized by huge amounts of stem/precursor cells showing different degrees of differentiation, admixed with mature cell types. The most striking difference between the preterm and adult kidney is represented by the abundance of stem/progenitor cells in the former. Multiple stem cell niches may be identified in the preterm kidney, including the capsule, the sub-capsular nephrogenic zone, the cap mesenchyme embracing the ureteric bud tips, the cortical and medullary interstitium, and the hilar zone in proximity of the ureteric origin. The sub-capsular area represents the major stem cell niche in the prenatal kidney. It has been defined “blue strip”, due to the scarcity of cytoplasm of the undifferentiated stem/progenitors, which appear as small cells arranged in a solid pattern. All these data taken together, the morphological approach to the analysis of the preterm kidney appears completely different from that typically utilized in kidney biopsies from adult subjects. Such a different structure should be taken into account when evaluating renal function in a preterm infant in clinical practice. Moreover, a better knowledge of molecular biology of the blue strip stem/progenitor cells could be at the basis of a new “endogenous” regenerative medicine, finalized to maintain and protect the nephrogenic potential of preterm infants till the 36th week of post-conceptional age, allowing them to escape oligonephronia and chronic kidney disease later in life.
Collapse
Affiliation(s)
- D Fanni
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - A Sanna
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - C Gerosa
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - M Puddu
- Department of Surgery, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Policlinico Monserrato, Azienda Ospedaliera Universitaria di Cagliari, University of Cagliari, 09042, Monserrato, Italy.
| | - G Faa
- Department of Pathology, University of Cagliari, via Ospedale 56, 09100, Cagliari, Italy.
| | - V Fanos
- Department of Surgery, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Policlinico Monserrato, Azienda Ospedaliera Universitaria di Cagliari, University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
18
|
Abstract
Unrestrained p53 activity during development, as occurs upon loss of the p53 negative regulators Mdm2 or Mdmx, causes early embryonic lethality. Surprisingly, co-expression of wild-type p53 and a transcriptionally-dead variant of p53, with mutations in both transactivation domains (p53(L25Q,W26S,F53Q,F54S)), also causes lethality, but later in gestation and in association with a host of very specific phenotypes reminiscent of a syndrome known as CHARGE. Molecular analyses revealed that wild-type p53 is inappropriately activated in p53(5,26,53,54/)(+) embryos, triggering cell-cycle arrest or apoptosis during development to cause CHARGE phenotypes. In addition, CHARGE syndrome is typically caused by mutations in the CHD7 chromatin remodeler, and we have shown that activated p53 contributes to phenotypes caused by CHD7-deficiency. Together, these studies provide new insight into CHARGE syndrome and expand our understanding of the role of p53 in diseases other than cancer.
Collapse
Affiliation(s)
- Jeanine L Van Nostrand
- a Division of Radiation and Cancer Biology; Department of Radiation Oncology ; Stanford School of Medicine ; Stanford , CA USA
| | | |
Collapse
|
19
|
Chen S, Yao X, Li Y, Saifudeen Z, Bachvarov D, El-Dahr SS. Histone deacetylase 1 and 2 regulate Wnt and p53 pathways in the ureteric bud epithelium. Development 2015; 142:1180-92. [PMID: 25758227 DOI: 10.1242/dev.113506] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone deacetylases (HDACs) regulate a broad range of biological processes through removal of acetyl groups from histones as well as non-histone proteins. Our previous studies showed that Hdac1 and Hdac2 are bound to promoters of key renal developmental regulators and that HDAC activity is required for embryonic kidney gene expression. However, the existence of many HDAC isoforms in embryonic kidneys raises questions concerning the possible specificity or redundancy of their functions. We report here that targeted deletion of both the Hdac1 and Hdac2 genes from the ureteric bud (UB) cell lineage of mice causes bilateral renal hypodysplasia. One copy of either Hdac1 or Hdac2 is sufficient to sustain normal renal development. In addition to defective cell proliferation and survival, genome-wide transcriptional profiling revealed that the canonical Wnt signaling pathway is specifically impaired in UB(Hdac1,2-/-) kidneys. Our results also demonstrate that loss of Hdac1 and Hdac2 in the UB epithelium leads to marked hyperacetylation of the tumor suppressor protein p53 on lysine 370, 379 and 383; these post-translational modifications are known to boost p53 stability and transcriptional activity. Genetic deletion of p53 partially rescues the development of UB(Hdac1,2-/-) kidneys. Together, these data indicate that Hdac1 and Hdac2 are crucial for kidney development. They perform redundant, yet essential, cell lineage-autonomous functions via p53-dependent and -independent pathways.
Collapse
Affiliation(s)
- Shaowei Chen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiao Yao
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yuwen Li
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec, QC, Canada G1R 2J6
| | - Samir S El-Dahr
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Fukuda R, Suico MA, Kai Y, Omachi K, Motomura K, Koga T, Komohara Y, Koyama K, Yokota T, Taura M, Shuto T, Kai H. Podocyte p53 Limits the Severity of Experimental Alport Syndrome. J Am Soc Nephrol 2015; 27:144-57. [PMID: 25967122 DOI: 10.1681/asn.2014111109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/26/2015] [Indexed: 11/03/2022] Open
Abstract
Alport syndrome (AS) is one of the most common types of inherited nephritis caused by mutation in one of the glomerular basement membrane components. AS is characterized by proteinuria at early stage of the disease and glomerular hyperplastic phenotype and renal fibrosis at late stage. Here, we show that global deficiency of tumor suppressor p53 significantly accelerated AS progression in X-linked AS mice and decreased the lifespan of these mice. p53 protein expression was detected in 21-week-old wild-type mice but not in age-matched AS mice. Expression of proinflammatory cytokines and profibrotic genes was higher in p53(+/-) AS mice than in p53(+/+) AS mice. In vitro experiments revealed that p53 modulates podocyte migration and positively regulates the expression of podocyte-specific genes. We established podocyte-specific p53 (pod-p53)-deficient AS mice, and determined that pod-p53 deficiency enhanced the AS-induced renal dysfunction, foot process effacement, and alteration of gene-expression pattern in glomeruli. These results reveal a protective role of p53 in the progression of AS and in maintaining glomerular homeostasis by modulating the hyperplastic phenotype of podocytes in AS.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukari Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Motomura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan; and
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsubasa Yokota
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Taura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan;
| |
Collapse
|
21
|
Thomasova D, Anders HJ. Cell cycle control in the kidney. Nephrol Dial Transplant 2014; 30:1622-30. [PMID: 25538161 DOI: 10.1093/ndt/gfu395] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/27/2014] [Indexed: 01/01/2023] Open
Abstract
Proper control of the cell cycle is mandatory during homeostasis and disease. The balance of p53 and MDM2 integrates numerous signalling pathways to regulate the cell cycle, which is executed by multiple proteins including the cyclins, cyclin kinases and cyclin kinase inhibitors. Mutations or environmental factors that affect cell cycle control can lead to inappropriate hyperplasia or cancer as well as to cell loss and tissue atrophy. Normal kidney function is maintained largely by post-mitotic quiescent cells in the G0 phase with a low turnover. Early cell cycle activation during kidney injury contributes to cell death via mitotic catastrophe, i.e. death via mitosis, e.g. of cell with significant DNA damage. At later stages, cell cycle entry supports tissue regeneration and functional reconstitution via cell hypertrophy and/or cell proliferation. It is of note that so-called proliferation markers such as Ki67, PCNA or BrdU identify only cell cycle entry without telling whether this results in cell hypertrophy, cell division or mitotic catastrophe. With this in mind, some established concepts on kidney injury and regeneration are to be re-evaluated. Here, we discuss the components and functional roles of p53/MDM2-mediated cell cycle regulation in kidney homeostasis and disease.
Collapse
Affiliation(s)
- Dana Thomasova
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| |
Collapse
|
22
|
Thomasova D, Bruns HA, Kretschmer V, Ebrahim M, Romoli S, Liapis H, Kotb AM, Endlich N, Anders HJ. Murine Double Minute-2 Prevents p53-Overactivation-Related Cell Death (Podoptosis) of Podocytes. J Am Soc Nephrol 2014; 26:1513-23. [PMID: 25349197 DOI: 10.1681/asn.2014040345] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
Murine double minute-2 (MDM2), an E3 ligase that regulates the cell cycle and inflammation, is highly expressed in podocytes. In podocyte injury, MDM2 drives podocyte loss by mitotic catastrophe, but the function of MDM2 in resting podocytes has not been explored. Here, we investigated the effects of podocyte MDM2 deletion in vitro and in vivo. In vitro, MDM2 knockdown by siRNA caused increased expression of p53 and podocyte death, which was completely rescued by coknockdown of p53. Apoptosis, pyroptosis, pyronecrosis, necroptosis, ferroptosis, and parthanatos were excluded as modes of occurrence for this p53-overactivation-related cell death (here referred to as podoptosis). Podoptosis was associated with cytoplasmic vacuolization, endoplasmic reticulum stress, and dysregulated autophagy (previously described as paraptosis). MDM2 knockdown caused podocyte loss and proteinuria in a zebrafish model, which was consistent with the phenotype of podocyte-specific MDM2-knockout mice that also showed the aforementioned ultrastructual podocyte abnormalities before and during progressive glomerulosclerosis. The phenotype of both animal models was entirely rescued by codeletion of p53. We conclude that MDM2 maintains homeostasis and long-term survival in podocytes by preventing podoptosis, a p53-regulated form of cell death with unspecific features previously classified as paraptosis.
Collapse
Affiliation(s)
- Dana Thomasova
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany;
| | - Hauke A Bruns
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Victoria Kretschmer
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Martrez Ebrahim
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Simone Romoli
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Helen Liapis
- Pathology, Immunology, and Internal Medicine (Renal), School of Medicine, Washington University, St. Louis, Missouri
| | - Ahmed M Kotb
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Greifswald, Germany; and,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nicole Endlich
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Greifswald, Germany; and
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| |
Collapse
|
23
|
Minuth WW, Denk L. Tannic acid label indicates abnormal cell development coinciding with regeneration of renal tubules. BMC Clin Pathol 2014; 14:34. [PMID: 25071418 PMCID: PMC4112905 DOI: 10.1186/1472-6890-14-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/11/2014] [Indexed: 12/29/2022] Open
Abstract
Background Stem/progenitor cells are in the focus of research as a future therapeutic option to stimulate regeneration in diseased renal parenchyma. However, current data indicate that successful seeding of implanted stem/progenitor cells is prevented by harmful interstitial fluid and altered extracellular matrix. To find out possible parameters for cell adaptation, the present investigation was performed. Methods Renal stem/progenitor cells were mounted in an artificial interstitium for perfusion culture. Exposure to chemically defined but CO2-independent culture media was tested during 13 days. Cell biological features were then analyzed by histochemistry, while structural details were investigated by transmission electron microscopy after conventional and improved fixation of specimens. Results Culture of renal stem/progenitor cells as well in Leibovitz’s L-15 Medium as CO2 Independent Medium shows in fluorescence microscopy spatial development of numerous tubules. Specimens of both media fixed by conventional glutaraldehyde exhibit in electron microscopy a homogeneous cell population in developed tubules. In contrast, fixation by glutaraldehyde including tannic acid illuminates that dispersed dark marked cells of unknown function are present. The screening further demonstrates that the dark cell type does not comply with cells found in embryonic, maturing or matured renal parenchyma. Conclusions The actual data show that development of abnormal cell features must be taken into account, when regeneration of renal tubules is simulated under in vitro conditions.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D-93053 Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D-93053 Regensburg, Germany
| |
Collapse
|
24
|
Zhang Y, Xiong S, Li Q, Hu S, Tashakori M, Van Pelt C, You MJ, Pageon L, Lozano G. Tissue-specific and age-dependent effects of global Mdm2 loss. J Pathol 2014; 233:380-91. [PMID: 24789767 DOI: 10.1002/path.4368] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/04/2014] [Accepted: 04/24/2014] [Indexed: 12/28/2022]
Abstract
Mdm2, an E3 ubiquitin ligase, negatively regulates the tumour suppressor p53. In this study we utilized a conditional Mdm2 allele, Mdm2(FM) , and a CAG-CreER tamoxifen-inducible recombination system to examine the effects of global Mdm2 loss in adult mice. Two different tamoxifen injection regimens caused 100% lethality of Mdm2(FM) (/-) ;CAG-CreER mice; both radio-sensitive and radio-insensitive tissues were impaired. Strikingly, a large number of radio-insensitive tissues, including the kidney, liver, heart, retina and hippocampus, exhibited various pathological defects. Similar tamoxifen injections in older (16-18 month-old) Mdm2(FM) (/-) ;CAG-CreER mice yielded abnormalities only in the kidney. In addition, transcriptional activation of Cdkn1a (p21), Bbc3 (Puma) and multiple senescence markers in young (2-4 month-old) mice following loss of Mdm2 was dampened in older mice. All phenotypes were p53-dependent, as Mdm2(FM) (/-) ;Trp53(-/-) ;CAG-CreER mice subjected to the same tamoxifen regimens were normal. Our findings implicate numerous possible toxicities in many normal tissues upon use of cancer therapies that aim to inhibit Mdm2 in tumours with wild-type p53.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|