1
|
Huang MY, Duan RY, Yin JW, Zhao Q, Wan YY, Liu Y. Individual and mixture toxicity of chromium and copper in development, oxidative stress, lipid metabolism and apoptosis of Bufo gargarizans embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105671. [PMID: 33166901 DOI: 10.1016/j.aquatox.2020.105671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In natural ecosystems, living organisms are always subjected to a mixture of multiple heavy metals exposure, yet it is more common to study the effect of individual, rather than combined exposure. This study assessed the impacts of single or combined exposure to Cr and Cu on embryonic development, oxidative stress, lipid metabolism and apoptosis in the early development of Bufo gargarizans embryos. The total length, development stage and malformations of embryos were measured, and the mRNA expression of genes related to oxidative stress, lipid metabolism and apoptosis at Gs 18 and Gs 22 were determined by RT-qPCR. The results showed that all treatments significantly reduced the total length of embryos, delayed the stage of embryonic development and increased the proportion of malformed embryos. The Cr-Cu mixture treatment showed the greatest suppression of embryonic development and induced the highest rate of embryo malformation, compared to individual Cr and Cu treatments. In addition, the expression levels of oxidative stress genes (HSP90, SOD and GPx) and fatty acid β-oxidation-related genes (ACOXL, ECHS1 and SCP) showed an up-regulated trend in treatments compared to control groups. Conversely, the lipid synthesis-related mRNA gene expressions (KAR, TECR, ACSL3 and ACSL4) were down-regulated. Among them, the Cr-Cu mixture had the greatest impact on lipid metabolism gene expression. The treatments showed significant effects on the expression of apoptosis genes (Bcl-1 and Bax), with Bcl-1 mRNA expression increasing and Bax mRNA expression decreasing. These results indicated that exposure to individual Cr, Cu and a Cr-Cu mixture can lead to oxidative stress, disrupt lipid metabolism and promote apoptosis, and the Cr-Cu mixture could cause more serious negative effects on B. gargarizans embryos than Cr or Cu individually.
Collapse
Affiliation(s)
- Min-Yi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Ren-Yan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| | - Jia-Wei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yu-Yue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
2
|
Li Y, Zhao Y, Deng H, Chen A, Chai L. Endocrine disruption, oxidative stress and lipometabolic disturbance of Bufo gargarizans embryos exposed to hexavalent chromium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:242-250. [PMID: 30273847 DOI: 10.1016/j.ecoenv.2018.09.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the current study was to determine the potential developmental and metabolic abnormalities caused by Cr (VI) exposure on Bufo gargarizans (B. gargarizans) embryos. B. gargarizans embryos were treated with different concentrations of Cr (VI) (13, 52, 104, 208, and 416 μg Cr6+ L-1) for 6 days. Morphological abnormalities, total length, weight and developmental stage were monitored. Malformations of embryos were also examined using scanning electron microscopy (SEM). In addition, the transcript levels of several genes associated with lipid metabolism, oxidative stress, and thyroid hormones signaling pathways were also determined. Our results showed a time-dependent inhibitory effect of Cr (VI) on the growth and development of B. gargarizans embryos. On day 4, total length, weight, and developmental stage were significantly lower at 416 μg Cr6+ L-1 relative to control embryos. On day 6, significant reductions in total length, weight, and developmental stage were observed at 104, 208, and 416 μg Cr6+ L-1. Malformed embryos were found in all Cr (VI) treatments, which were characterized by axial flexures, yolk sac edema and rupture, surface tissue hyperplasia, stunted growth, wavy fin and fin flexure. RT-qPCR results showed that exposure to Cr (VI) down-regulated TRβ and Dio2 mRNA expression and up-regulated Dio3 mRNA level at 416 μg Cr6+ L-1. The transcript levels of SOD and GPx were upregulated at 52, 208, and 416 μg Cr6+ L-1, while the transcript level of HSP90 was downregulated at 52, 208, and 416 μg Cr6+ L-1. Also, mRNA expression of lipid synthesis-related genes (FAE and ACC) were significantly downregulated in embryos treated with 208 and 416 μg Cr6+ L-1, but mRNA expression of fatty acid β-oxidation-related genes (ACOX, CPT, and SCP) was significantly upregulated at 416 μg Cr6+ L-1. Therefore, our results suggested that Cr (VI) could disrupt thyroid endocrine pathways and lipid synthesis, leading to the inhibition of growth and development in B. gargarizans embryos. Furthermore, the decreased ability of scavenging ROS induced by Cr (VI) might be responsible for the teratogenic effects of Cr (VI).
Collapse
Affiliation(s)
- Yanbin Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China
| | - Hongzhang Deng
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China
| | - Aixia Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China.
| |
Collapse
|
3
|
Shi Q, Sun N, Kou H, Wang H, Zhao H. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:500-509. [PMID: 30145490 DOI: 10.1016/j.ecoenv.2018.08.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Mercury is severely detrimental to organisms and is ubiquitous in both terrestrial and aquatic ecosystems. In the present study, we examined the effects of chronic mercury (Hg) exposure on metamorphosis, body size, thyroid microstructures, liver microstructural and ultrastructural features, and transcript levels of genes associated with lipid metabolism, oxidative stress and thyroid hormones signaling pathways of Chinese toad (Bufo gargarizans) tadpoles. Tadpoles were exposed to mercury concentrations at 0, 6, 12, 18, 24 and 30 µg/L from Gosner stage 26-42 of metamorphic climax. The present results showed that high dose mercury (24 and 30 µg/L) decelerated metamorphosis rate and inhibited body size of B. gargarizans larvae. Histological examinations have clearly exhibited that high mercury concentrations caused thyroid gland and liver damages. Moreover, degeneration and disintegration of hepatocytes, mitochondrial vacuolation, and endoplasmic reticulum breakdown were visible in the ultrastructure of liver after high dose mercury treatment. Furthermore, the larvae exposed to high dose mercury demonstrated a significant decrease in type II iodothyronine deiodinase (Dio2) and thyroid hormone receptor α and β (TRα and TRβ) mRNA levels. Transcript level of superoxide dismutase (SOD) and heat shock protein (HSP) were significantly up regulated in larvae exposed to high dose mercury, while transcript level of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was significantly down regulated. Moreover, exposure to high dose mercury significantly down regulated mRNA expression of carnitine palmitoyltransferase (CPT), sterol carrier protein (SCP), acyl-CoA oxidase (ACOX) and peroxisome proliferator-activated receptor α (PPAPα), but significantly up regulated mRNA expression of fatty acid elongase (FAE), fatty acid synthetase (FAS) and Acetyl CoA Carboxylase (ACC). Therefore, we conclude that high dose mercury induced thyroid function disruption, liver oxidative stress and lipid metabolism disorder by damaging thyroid and liver cell structures and altering the expression levels of relevant genes.
Collapse
Affiliation(s)
- Qiang Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Nailiang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Honghong Kou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China.
| |
Collapse
|
4
|
Feng S, Streets AJ, Nesin V, Tran U, Nie H, Onopiuk M, Wessely O, Tsiokas L, Ong ACM. The Sorting Nexin 3 Retromer Pathway Regulates the Cell Surface Localization and Activity of a Wnt-Activated Polycystin Channel Complex. J Am Soc Nephrol 2017; 28:2973-2984. [PMID: 28620080 PMCID: PMC5619965 DOI: 10.1681/asn.2016121349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/07/2017] [Indexed: 02/04/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by inactivating mutations in PKD1 (85%) or PKD2 (15%). The ADPKD proteins encoded by these genes, polycystin-1 (PC1) and polycystin-2 (PC2), form a plasma membrane receptor-ion channel complex. However, the mechanisms controlling the subcellular localization of PC1 and PC2 are poorly understood. Here, we investigated the involvement of the retromer complex, an ancient protein module initially discovered in yeast that regulates the retrieval, sorting, and retrograde transport of membrane receptors. Using yeast two-hybrid, biochemical, and cellular assays, we determined that PC2 binds two isoforms of the retromer-associated protein sorting nexin 3 (SNX3), including a novel isoform that binds PC2 in a direct manner. Knockdown of SNX3 or the core retromer protein VPS35 increased the surface expression of endogenous PC1 and PC2 in vitro and in vivo and increased Wnt-activated PC2-dependent whole-cell currents. These findings indicate that an SNX3-retromer complex regulates the surface expression and function of PC1 and PC2. Molecular targeting of proteins involved in the endosomal sorting of PC1 and PC2 could lead to new therapeutic approaches in ADPKD.
Collapse
Affiliation(s)
- Shuang Feng
- Kidney Genetics Group, Academic Nephrology Unit and the Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit and the Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Hongguang Nie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Marta Onopiuk
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit and the Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom;
| |
Collapse
|
5
|
Chai L, Chen A, Luo P, Zhao H, Wang H. Histopathological changes and lipid metabolism in the liver of Bufo gargarizans tadpoles exposed to Triclosan. CHEMOSPHERE 2017; 182:255-266. [PMID: 28500970 DOI: 10.1016/j.chemosphere.2017.05.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/09/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
In the current study, the adverse effects of TCS on liver health of B. gargarizans tadpoles were assessed. B. gargarizans larvae were exposed to TCS at 0, 10, 30, 60, and 150 μg L-1 from Gosner stage 3 until metamorphic climax. The hepatosomatic index (HSI), hepatic histological and ultrastructural features, and transcript levels of genes associated with detoxification and oxidative stress as well as lipid metabolism in the livers were determined. Exposure to 150 μg L-1 TCS resulted in increased HSI of tadpoles at metamorphic climax. Histological changes characterized by an increase in the number of melanomacrophage, nucleus pyknosis, and deposition of collagen fibers were observed in liver at 60 and 150 μg L-1 TCS. Moreover, marked ultrastructural alterations including high electron dense in mitochondrial matrix and lipid accumulation were also observed. In addition, abundances of transcripts of Cu/Zn superoxide dismutase (SOD), phospholipid hydroperoxide glutathione peroxidase (PHGPx), and heat shock protein 90 (HSP90) were decreased in larvae exposed to 60 and 150 μg L-1 TCS, while transcript level of HSP90 was increased at 30 μg L-1 TCS. Also, abundances of transcripts of acetyl-CoA carboxylase (ACC), carnitine palmitoyltransferase 2 (CPT2), peroxisome proliferator-activated receptor alpha (PPARa), fatty acid elongase 1 (FAE), sterol carrier protein 2 (SCP) were significantly lesser in larvae exposed to 60 and 150 μg L-1 TCS. Overall, TCS at high levels induced histopathological changes in the liver of B. gargarizans tadpoles. This might have been due to the alteration of oxidative stress-related genes and lipid metabolism-related genes expression levels.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064 China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064 China
| | - Aixia Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064 China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064 China
| | - Pingping Luo
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064 China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064 China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
6
|
Hasan MM, DeFaveri J, Kuure S, Dash SN, Lehtonen S, Merilä J, McCairns RJS. Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. J Exp Biol 2017; 220:2175-2186. [DOI: 10.1242/jeb.146027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023]
Abstract
Novel physiological challenges in different environments can promote the evolution of divergent phenotypes, either through plastic or genetic changes. Environmental salinity serves as a key barrier to the distribution of nearly all aquatic organisms, and species diversification is likely to be enabled by adaptation to alternative osmotic environments. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations found both in marine and freshwater environments. It has evolved both highly plastic and locally adapted phenotypes due to salinity-derived selection, but the physiological and genetic basis of adaptation to salinity is not fully understood. We integrated comparative cellular morphology of the kidney, a key organ for osmoregulation, and candidate gene expression to explore the underpinnings of evolved variation in osmotic plasticity within two populations of sticklebacks from distinct salinity zones in the Baltic Sea: the high salinity Kattegat, representative of the ancestral marine habitat, and the low salinity Bay of Bothnia. A common-garden experiment revealed that kidney morphology in the ancestral high salinity population had a highly plastic response to salinity conditions, whereas this plastic response was reduced in the low salinity population. Candidate gene expression in kidney tissue revealed a similar pattern of population-specific differences, with a higher degree of plasticity in the native high salinity population. Together these results suggest that renal cellular morphology has become canalized to low salinity, and that these structural differences may have functional implications for osmoregulation.
Collapse
Affiliation(s)
- M. Mehedi Hasan
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jacquelin DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- Institute of Biotechnology & Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - R. J. Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, 35042 Rennes, France
| |
Collapse
|
7
|
Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS. Acta Pharmacol Sin 2016; 37:645-55. [PMID: 26838071 DOI: 10.1038/aps.2015.159] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Abstract
AIM Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. METHODS Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. RESULTS Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. CONCLUSION Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS.
Collapse
|
8
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|