1
|
Nishida H, Albero AB, Onoue K, Ikegawa Y, Sulekh S, Sakizli U, Minami Y, Yonemura S, Wang YC, Yoo SK. Necrosensor: a genetically encoded fluorescent sensor for visualizing necrosis in Drosophila. Biol Open 2024; 13:bio060104. [PMID: 38156558 PMCID: PMC10836653 DOI: 10.1242/bio.060104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Historically, necrosis has been considered a passive process, which is induced by extreme stress or damage. However, recent findings of necroptosis, a programmed form of necrosis, shed a new light on necrosis. It has been challenging to detect necrosis reliably in vivo, partly due to the lack of genetically encoded sensors to detect necrosis. This is in stark contrast with the availability of many genetically encoded biosensors for apoptosis. Here we developed Necrosensor, a genetically encoded fluorescent sensor that detects necrosis in Drosophila, by utilizing HMGB1, which is released from the nucleus as a damage-associated molecular pattern (DAMP). We demonstrate that Necrosensor is able to detect necrosis induced by various stresses in multiple tissues in both live and fixed conditions. Necrosensor also detects physiological necrosis that occurs during spermatogenesis in the testis. Using Necrosensor, we discovered previously unidentified, physiological necrosis of hemocyte progenitors in the hematopoietic lymph gland of developing larvae. This work provides a new transgenic system that enables in vivo detection of necrosis in real time without any intervention.
Collapse
Affiliation(s)
- Hiroshi Nishida
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, 650-0047, Japan
| | | | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN BDR, Kobe, 650-0047, Japan
| | - Yuko Ikegawa
- Laboratory of Molecular Cell Biology and Development, Kyoto University, Kobe, 650-0047, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
| | - Shivakshi Sulekh
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| | - Ugurcan Sakizli
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN BDR, Kobe, 650-0047, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima, 770-8503, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN BDR, Kobe, 650-0047, Japan
| | - Sa Kan Yoo
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, 650-0047, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| |
Collapse
|
2
|
Morio A, Lee JM, Fujii T, Mon H, Masuda A, Kakino K, Xu J, Banno Y, Kusakabe T. The biological role of core 1β1-3galactosyltransferase (T-synthase) in mucin-type O-glycosylation in Silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103936. [PMID: 36990248 DOI: 10.1016/j.ibmb.2023.103936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
O-glycosylation of secreted and membrane-bound proteins is an important post-translational modification that affects recognition of cell surface receptors, protein folding, and stability. However, despite the importance of O-linked glycans, their biological functions have not yet been fully elucidated and the synthetic pathway of O-glycosylation has not been investigated in detail, especially in the silkworm. In this study, we aimed to investigate O-glycosylation in silkworms by analyzing the overall structural profiles of mucin-type O-glycans using LC-MS. We found GalNAc or GlcNAc monosaccharide and core 1 disaccharide (Galβ1-3-GalNAcα1-Ser/Thr) were major components of the O-glycan attached to secreted proteins produced in silkworms. Furthermore, we characterized the 1 b1,3-galactosyltransferase (T-synthase) required for synthesis of the core 1 structure, common to many animals. Five transcriptional variants and four protein isoforms were identified in silkworms, and the biological functions of these isoforms were investigated. We found that BmT-synthase isoforms 1 and 2 were localized in the Golgi apparatus in cultured BmN4 cells and functioned both in cultured cells and silkworms. Additionally, a specific functional domain of T-synthase, called the stem domain, was found to be essential for activity and is presumed to be needed for dimer formation and galactosyltransferase activity. Altogether, our results elucidated the O-glycan profile and function of T-synthase in the silkworm. Our findings allow the practical comprehension of O-glycosylation required for employing silkworms as a productive expression system.
Collapse
Affiliation(s)
- Akihiro Morio
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, 2716-1 Kurakake 2716-1, Ohra-gun Chiyoda-machi, Gunma, 370-0503, Gunma, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Yutaka Banno
- Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Nguyen MQ, Taniguchi M, Yasumura M, Iguchi T, Sato M. Cytoneme-like protrusion formation induced by LAR is promoted by receptor dimerization. Biol Open 2022; 11:276051. [PMID: 35735010 PMCID: PMC9346286 DOI: 10.1242/bio.059024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Actin-based protrusions called cytonemes are reported to function in cell communication by supporting events such as morphogen gradient establishment and pattern formation. Despite the crucial roles of cytonemes in cell signaling, the molecular mechanism for cytoneme establishment remains elusive. In this study, we showed that the leukocyte common antigen-related (LAR) receptor protein tyrosine phosphatase plays an important role in cytoneme-like protrusion formation. Overexpression of LAR in HEK293T cells induced the formation of actin-based protrusions, some of which exceeded 200 µm in length and displayed a complex morphology with branches. Upon focusing on the regulation of LAR dimerization or clustering and the resulting regulatory effects on LAR phosphatase activity, we found that longer and more branched protrusions were formed when LAR dimerization was artificially induced and when heparan sulfate was applied. Interestingly, although the truncated form of LAR lacking phosphatase-related domains promoted protrusion formation, the phosphatase-inactive forms did not show clear changes, suggesting that LAR dimerization triggers the formation of cytoneme-like protrusions in a phosphatase-independent manner. Our results thus emphasize the importance of LAR and its dimerization in cell signaling. This article has an associated First Person interview with the first author of the paper. Summary: We showed that the formation of cytoneme-like protrusions, which function in cell signaling, is induced by LAR and clarified that it is LAR dimerization which promotes protrusion formation.
Collapse
Affiliation(s)
- Mai Quynh Nguyen
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Misato Yasumura
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Makoto Sato
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui (UGSCD), Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Taberner L, Bañón A, Alsina B. Sensory Neuroblast Quiescence Depends on Vascular Cytoneme Contacts and Sensory Neuronal Differentiation Requires Initiation of Blood Flow. Cell Rep 2021; 32:107903. [PMID: 32668260 DOI: 10.1016/j.celrep.2020.107903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
In many organs, stem cell function depends on communication with their niche partners. Cranial sensory neurons develop in close proximity to blood vessels; however, whether vasculature is an integral component of their niches is yet unknown. Here, two separate roles for vasculature in cranial sensory neurogenesis in zebrafish are uncovered. The first involves precise spatiotemporal endothelial-neuroblast cytoneme contacts and Dll4-Notch signaling to restrain neuroblast proliferation. The second, instead, requires blood flow to trigger a transcriptional response that modifies neuroblast metabolic status and induces sensory neuron differentiation. In contrast, no role of sensory neurogenesis in vascular development is found, suggesting unidirectional signaling from vasculature to sensory neuroblasts. Altogether, we demonstrate that the cranial vasculature constitutes a niche component of the sensory ganglia that regulates the pace of their growth and differentiation dynamics.
Collapse
Affiliation(s)
- Laura Taberner
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Bañón
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Pecori F, Akimoto Y, Hanamatsu H, Furukawa JI, Shinohara Y, Ikehara Y, Nishihara S. Mucin-type O-glycosylation controls pluripotency in mouse embryonic stem cells via Wnt receptor endocytosis. J Cell Sci 2020; 133:jcs245845. [PMID: 32973111 DOI: 10.1242/jcs.245845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) can differentiate into a range of cell types during development, and this pluripotency is regulated by various extrinsic and intrinsic factors. Mucin-type O-glycosylation has been suggested to be a potential factor in the control of ESC pluripotency, and is characterized by the addition of N-acetylgalactosamine (GalNAc) to serine or threonine residues of membrane-anchored proteins and secreted proteins. To date, the relationship between mucin-type O-glycosylation and signaling in ESCs remains undefined. Here, we identify the elongation pathway via C1GalT1 that synthesizes T antigen (Galβ1-3GalNAc) as the most prominent among mucin-type O-glycosylation modifications in ESCs. Moreover, we show that mucin-type O-glycosylation on the Wnt signaling receptor frizzled-5 (Fzd5) regulates its endocytosis via galectin-3 binding to T antigen, and that reduction of T antigen results in the exit of the ESCs from pluripotency via canonical Wnt signaling activation. Our findings reveal a novel regulatory mechanism that modulates Wnt signaling and, consequently, ESC pluripotency.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Yasuro Shinohara
- Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Yuzuru Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
- Glycan & Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
7
|
Functional analysis of glycosylation using Drosophila melanogaster. Glycoconj J 2019; 37:1-14. [DOI: 10.1007/s10719-019-09892-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
|
8
|
Huang H, Liu S, Kornberg TB. Glutamate signaling at cytoneme synapses. Science 2019; 363:948-955. [PMID: 30819957 DOI: 10.1126/science.aat5053] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/14/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
We investigated the roles of components of neuronal synapses for development of the Drosophila air sac primordium (ASP). The ASP, an epithelial tube, extends specialized signaling filopodia called cytonemes that take up signals such as Dpp (Decapentaplegic, a homolog of the vertebrate bone morphogenetic protein) from the wing imaginal disc. Dpp signaling in the ASP was compromised if disc cells lacked Synaptobrevin and Synaptotagmin-1 (which function in vesicle transport at neuronal synapses), the glutamate transporter, and a voltage-gated calcium channel, or if ASP cells lacked Synaptotagmin-4 or the glutamate receptor GluRII. Transient elevations of intracellular calcium in ASP cytonemes correlate with signaling activity. Calcium transients in ASP cells depend on GluRII, are activated by l-glutamate and by stimulation of an optogenetic ion channel expressed in the wing disc, and are inhibited by EGTA and by the GluR inhibitor NASPM (1-naphthylacetyl spermine trihydrochloride). Activation of GluRII is essential but not sufficient for signaling. Cytoneme-mediated signaling is glutamatergic.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Songmei Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
González-Méndez L, Gradilla AC, Guerrero I. The cytoneme connection: direct long-distance signal transfer during development. Development 2019; 146:146/9/dev174607. [PMID: 31068374 DOI: 10.1242/dev.174607] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During development, specialized cells produce signals that distribute among receiving cells to induce a variety of cellular behaviors and organize tissues. Recent studies have highlighted cytonemes, a type of specialized signaling filopodia that carry ligands and/or receptor complexes, as having a role in signal dispersion. In this Primer, we discuss how the dynamic regulation of cytonemes facilitates signal transfer in complex environments. We assess recent evidence for the mechanisms for cytoneme formation, function and regulation, and postulate that contact between cytoneme membranes promotes signal transfer as a new type of synapse (morphogenetic synapsis). Finally, we reflect on the fundamental unanswered questions related to understanding cytoneme biology.
Collapse
Affiliation(s)
- Laura González-Méndez
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Ana-Citlali Gradilla
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Isabel Guerrero
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
10
|
Valoskova K, Biebl J, Roblek M, Emtenani S, Gyoergy A, Misova M, Ratheesh A, Reis-Rodrigues P, Shkarina K, Larsen ISB, Vakhrushev SY, Clausen H, Siekhaus DE. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife 2019; 8:e41801. [PMID: 30910009 PMCID: PMC6435326 DOI: 10.7554/elife.41801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva's vertebrate ortholog, MFSD1, rescues the minerva mutant's migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.
Collapse
Affiliation(s)
| | - Julia Biebl
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Marko Roblek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Shamsi Emtenani
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Attila Gyoergy
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michaela Misova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Aparna Ratheesh
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUnited Kingdom
| | | | | | - Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daria E Siekhaus
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
11
|
Nishihara S. Glycans in stem cell regulation: from
Drosophila
tissue stem cells to mammalian pluripotent stem cells. FEBS Lett 2018; 592:3773-3790. [DOI: 10.1002/1873-3468.13167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shoko Nishihara
- Laboratory of Cell Biology Department of Bioinformatics Graduate School of Engineering Soka University Hachioji Japan
| |
Collapse
|
12
|
Itoh K, Akimoto Y, Kondo S, Ichimiya T, Aoki K, Tiemeyer M, Nishihara S. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Dev Biol 2018; 436:108-124. [PMID: 29499182 DOI: 10.1016/j.ydbio.2018.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 01/27/2023]
Abstract
T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization, basement membrane formation, and NMJ arborization on larval muscles.
Collapse
Affiliation(s)
- Kazuyoshi Itoh
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
13
|
Short stop mediates axonal compartmentalization of mucin-type core 1 glycans. Sci Rep 2017; 7:41455. [PMID: 28150729 PMCID: PMC5288716 DOI: 10.1038/srep41455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/19/2016] [Indexed: 02/02/2023] Open
Abstract
T antigen, mucin-type core 1 O-glycan, is highly expressed in the embryonic central nervous system (CNS) and co-localizes with a Drosophila CNS marker, BP102 antigen. BP102 antigen and Derailed, an axon guidance receptor, are localized specifically in the proximal axon segment of isolated primary cultured neurons, and their mobility is restricted at the intra-axonal boundary by a diffusion barrier. However, the preferred trafficking mechanism remains unknown. In this study, the major O-glycan T antigen was found to localize within the proximal compartments of primary cultured Drosophila neurons, whereas the N-glycan HRP antigen was not. Ultrastructural analysis by atmospheric scanning electron microscopy revealed that microtubule bundles cross one another at the intra-axonal boundary, and that T antigens form circular pattern before the boundary. We then identified Short stop (Shot), a crosslinker protein between F-actin and microtubules, as a mediator for the proximal localization of T antigens; null mutation of shot cancelled preferential localization of T antigens. Moreover, F-actin binding domain of Shot was required for their proximal localization. Together, our results allow us to propose a novel trafficking pathway where Shot crosslinks F-actin and microtubules around the intra-axonal boundary, directing T antigen-carrying vesicles toward the proximal plasma membrane.
Collapse
|
14
|
Itoh K, Akimoto Y, Fuwa TJ, Sato C, Komatsu A, Nishihara S. Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila. Dev Biol 2016; 412:114-127. [PMID: 26896591 DOI: 10.1016/j.ydbio.2016.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/27/2022]
Abstract
T antigen (Galβ1-3GalNAcα1-Ser/Thr), a core 1 mucin-type O-glycan structure, is synthesized by Drosophila core 1 β1,3-galactosyltrasferase 1 (dC1GalT1) and is expressed in various tissues. We previously reported that dC1GalT1 synthesizes T antigen expressed in hemocytes, lymph glands, and the central nervous system (CNS) and that dC1GalT1 mutant larvae display decreased numbers of circulating hemocytes and excessive differentiation of hematopoietic stem cells in lymph glands. dC1GalT1 mutant larvae have also been shown to have morphological defects in the CNS. However, the functions of T antigen in other tissues remain largely unknown. In this study, we found that glycans contributed to the localization of neuromuscular junction (NMJ) boutons. In dC1GalT1 mutant larvae, NMJs were ectopically formed in the cleft between muscles 6 and 7 and connected with these two muscles. dC1GalT1 synthesized T antigen, which was expressed at NMJs. In addition, we determined the function of mucin-type O-glycans in muscle cells. In dC1GalT1 mutant muscles, myofibers and basement membranes were disorganized. Moreover, ultrastructural defects in NMJs and accumulation of large endosome-like structures within both NMJ boutons and muscle cells were observed in dC1GalT1 mutants. Taken together, these results demonstrated that mucin-type O-glycans synthesized by dC1GalT1 were involved in the localization of NMJ boutons, synaptogenesis of NMJs, establishment of muscle cell architecture, and endocytosis.
Collapse
Affiliation(s)
- Kazuyoshi Itoh
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Takashi J Fuwa
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba-shi, Ibaraki 305-8566, Japan
| | - Akira Komatsu
- Department of Biosciences, Faculty of science and engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi 320-0003, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan.
| |
Collapse
|