1
|
Venkatachalam T, Mannimala S, Pulijala Y, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that may target different GTPases. PLoS Genet 2024; 20:e1011330. [PMID: 39083711 PMCID: PMC11290852 DOI: 10.1371/journal.pgen.1011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. We interfered with GEF function by interfering with CED-5's ability to bind Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies strongly support that the GAP function likely acts on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yeshaswi Pulijala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
2
|
Venkatachalam T, Mannimala S, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that target different GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560868. [PMID: 37873140 PMCID: PMC10592980 DOI: 10.1101/2023.10.04.560868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. A candidate GEF region on CED-5 faces towards Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies showed the GEF and GAP functions act on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
3
|
Lynch AM, Zhu Y, Lucas BG, Winkelman JD, Bai K, Martin SCT, Block S, Slabodnick MM, Audhya A, Goldstein B, Pettitt J, Gardel ML, Hardin J. TES-1/Tes and ZYX-1/Zyxin protect junctional actin networks under tension during epidermal morphogenesis in the C. elegans embryo. Curr Biol 2022; 32:5189-5199.e6. [PMID: 36384139 PMCID: PMC9729467 DOI: 10.1016/j.cub.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
LIM-domain-containing repeat (LCR) proteins are recruited to strained actin filaments within stress fibers in cultured cells,1,2,3 but their roles at cell-cell junctions in living organisms have not been extensively studied. Here, we show that the Caenorhabditis elegans LCR proteins TES-1/Tes and ZYX-1/Zyxin are recruited to apical junctions during embryonic elongation when junctions are under tension. In genetic backgrounds in which embryonic elongation fails, junctional recruitment is severely compromised. The two proteins display complementary patterns of expression: TES-1 is expressed in lateral (seam) epidermal cells, whereas ZYX-1 is expressed in dorsal and ventral epidermal cells. tes-1 and zyx-1 mutant embryos display junctional F-actin defects. The loss of either protein strongly enhances morphogenetic defects in hypomorphic mutant backgrounds for cadherin/catenin complex (CCC) components. The LCR regions of TES-1 and ZYX-1 are recruited to stress fiber strain sites (SFSSs) in cultured vertebrate cells. Together, these data establish TES-1 and ZYX-1 as components of a multicellular, tension-sensitive system that stabilizes the junctional actin cytoskeleton during embryonic morphogenesis.
Collapse
Affiliation(s)
- Allison M Lynch
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Yuyun Zhu
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Bethany G Lucas
- Department of Biology, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| | - Jonathan D Winkelman
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Keliya Bai
- University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | | | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mark M Slabodnick
- Department of Biology, Knox University, Galesburg, IL 61401, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan Pettitt
- University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Department of Physics, James Franck Institute and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin, Madison, WI 53706, USA; Biophysics Program, University of Wisconsin, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Drewnik ED, Wiesenfahrt T, Smit RB, Park YJ, Pallotto LM, Mains PE. Tissue-specific regulation of epidermal contraction during C. elegans embryonic morphogenesis. G3-GENES GENOMES GENETICS 2021; 11:6273666. [PMID: 33974063 PMCID: PMC8495928 DOI: 10.1093/g3journal/jkab164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Actin and myosin mediate the epidermal cell contractions that elongate the Caenorhabditis elegans embryo from an ovoid to a tubular-shaped worm. Contraction occurs mainly in the lateral epidermal cells, while the dorsoventral epidermis plays a more passive role. Two parallel pathways trigger actinomyosin contraction, one mediated by LET-502/Rho kinase and the other by PAK-1/p21 activated kinase. A number of genes mediating morphogenesis have been shown to be sufficient when expressed either laterally or dorsoventrally. Additional genes show either lateral or dorsoventral phenotypes. This led us to a model where contractile genes have discrete functions in one or the other cell type. We tested this by examining several genes for either lateral or dorsoventral sufficiency. LET-502 expression in the lateral cells was sufficient to drive elongation. MEL-11/Myosin phosphatase, which antagonizes contraction, and PAK-1 were expected to function dorsoventrally, but we could not detect tissue-specific sufficiency. Double mutants of lethal alleles predicted to decrease lateral contraction with those thought to increase dorsoventral force were previously shown to be viable. We hypothesized that these mutant combinations shifted the contractile force from the lateral to the dorsoventral cells and so the embryos would elongate with less lateral cell contraction. This was tested by examining 10 single and double mutant strains. In most cases, elongation proceeded without a noticeable alteration in lateral contraction. We suggest that many embryonic elongation genes likely act in both lateral and dorsoventral cells, even though they may have their primary focus in one or the other cell type.
Collapse
Affiliation(s)
- Elizabeth D Drewnik
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tobias Wiesenfahrt
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ye-Jean Park
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Linda M Pallotto
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Corresponding author: Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
5
|
Zhang W, Wang S, Yang C, Hu C, Chen D, Luo Q, He Z, Liao Y, Yao Y, Chen J, He J, Hu J, Xia T, Lin L, Shi A. LET-502/ROCK Regulates Endocytic Recycling by Promoting Activation of RAB-5 in a Distinct Subpopulation of Sorting Endosomes. Cell Rep 2021; 32:108173. [PMID: 32966783 DOI: 10.1016/j.celrep.2020.108173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
To explore the mechanism of Rab5/RAB-5 activation during endocytic recycling, we perform a genome-wide RNAi screen and identify a recycling regulator, LET-502/ROCK. LET-502 preferentially interacts with RAB-5(GDP) and activates RABX-5 GEF activity toward RAB-5, presumably by disrupting the self-inhibiting conformation of RABX-5. Furthermore, we find that the concomitant loss of LET-502 and another CED-10 effector, TBC-2/RAB-5-GAP, results in an endosomal buildup of RAB-5, indicating that CED-10 directs TBC-2-mediated RAB-5 inactivation and re-activates RAB-5 via LET-502 afterward. Then, we compare the functional position of LET-502 with that of RME-6/RAB-5-GEF. Loss of LET-502-RABX-5 module or RME-6 leads to diminished RAB-5 presence in spatially distinct endosome groups. We conclude that in the intestine of C. elegans, RAB-5 resides in discrete endosome subpopulations. Under the oversight of CED-10, LET-502 synergizes with RABX-5 to revitalize RAB-5 on a subset of endosomes in the deep cytosol, ensuring the progress of basolateral recycling.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China; Department of Pathology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070 Hubei, China
| | - Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Qian Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Zhen He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Yuhan Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Yuxin Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Jun He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Junbo Hu
- Department of Pathology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070 Hubei, China
| | - Tian Xia
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China.
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China.
| |
Collapse
|
6
|
Jud MC, Lowry J, Padilla T, Clifford E, Yang Y, Fennell F, Miller AK, Hamill D, Harvey AM, Avila-Zavala M, Shao H, Nguyen Tran N, Bao Z, Bowerman B. A genetic screen for temperature-sensitive morphogenesis-defective Caenorhabditis elegans mutants. G3-GENES GENOMES GENETICS 2021; 11:6169531. [PMID: 33713117 PMCID: PMC8133775 DOI: 10.1093/g3journal/jkab026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022]
Abstract
Morphogenesis involves coordinated cell migrations and cell shape changes that generate tissues and organs, and organize the body plan. Cell adhesion and the cytoskeleton are important for executing morphogenesis, but their regulation remains poorly understood. As genes required for embryonic morphogenesis may have earlier roles in development, temperature-sensitive embryonic-lethal mutations are useful tools for investigating this process. From a collection of ∼200 such Caenorhabditis elegans mutants, we have identified 17 that have highly penetrant embryonic morphogenesis defects after upshifts from the permissive to the restrictive temperature, just prior to the cell shape changes that mediate elongation of the ovoid embryo into a vermiform larva. Using whole genome sequencing, we identified the causal mutations in seven affected genes. These include three genes that have roles in producing the extracellular matrix, which is known to affect the morphogenesis of epithelial tissues in multicellular organisms: the rib-1 and rib-2 genes encode glycosyltransferases, and the emb-9 gene encodes a collagen subunit. We also used live imaging to characterize epidermal cell shape dynamics in one mutant, or1219ts, and observed cell elongation defects during dorsal intercalation and ventral enclosure that may be responsible for the body elongation defects. These results indicate that our screen has identified factors that influence morphogenesis and provides a platform for advancing our understanding of this fundamental biological process.
Collapse
Affiliation(s)
- Molly C Jud
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Josh Lowry
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Thalia Padilla
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Erin Clifford
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Yuqi Yang
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Francesca Fennell
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Alexander K Miller
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Danielle Hamill
- Department of Zoology, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Austin M Harvey
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Martha Avila-Zavala
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| | - Hong Shao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Nhan Nguyen Tran
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97402, USA
| |
Collapse
|
7
|
Game of Tissues: How the Epidermis Thrones C. elegans Shape. J Dev Biol 2020; 8:jdb8010007. [PMID: 32182901 PMCID: PMC7151205 DOI: 10.3390/jdb8010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The versatility of epithelial cell structure is universally exploited by organisms in multiple contexts. Epithelial cells can establish diverse polarized axes within their tridimensional structure which enables them to flexibly communicate with their neighbors in a 360° range. Hence, these cells are central to multicellularity, and participate in diverse biological processes such as organismal development, growth or immune response and their misfunction ultimately impacts disease. During the development of an organism, the first task epidermal cells must complete is the formation of a continuous sheet, which initiates its own morphogenic process. In this review, we will focus on the C. elegans embryonic epithelial morphogenesis. We will describe how its formation, maturation, and spatial arrangements set the final shape of the nematode C. elegans. Special importance will be given to the tissue-tissue interactions, regulatory tissue-tissue feedback mechanisms and the players orchestrating the process.
Collapse
|
8
|
Markwardt ML, Snell NE, Guo M, Wu Y, Christensen R, Liu H, Shroff H, Rizzo MA. A Genetically Encoded Biosensor Strategy for Quantifying Non-muscle Myosin II Phosphorylation Dynamics in Living Cells and Organisms. Cell Rep 2018; 24:1060-1070.e4. [PMID: 30044973 PMCID: PMC6117825 DOI: 10.1016/j.celrep.2018.06.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
Complex cell behaviors require dynamic control over non-muscle myosin II (NMMII) regulatory light chain (RLC) phosphorylation. Here, we report that RLC phosphorylation can be tracked in living cells and organisms using a homotransfer fluorescence resonance energy transfer (FRET) approach. Fluorescent protein-tagged RLCs exhibit FRET in the dephosphorylated conformation, permitting identification and quantification of RLC phosphorylation in living cells. This approach is versatile and can accommodate several different fluorescent protein colors, thus enabling multiplexed imaging with complementary biosensors. In fibroblasts, dynamic myosin phosphorylation was observed at the leading edge of migrating cells and retracting structures where it persistently colocalized with activated myosin light chain kinase. Changes in myosin phosphorylation during C. elegans embryonic development were tracked using polarization inverted selective-plane illumination microscopy (piSPIM), revealing a shift in phosphorylated myosin localization to a longitudinal orientation following the onset of twitching. Quantitative analyses further suggested that RLC phosphorylation dynamics occur independently from changes in protein expression.
Collapse
Affiliation(s)
- Michele L Markwardt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole E Snell
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - Yicong Wu
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - Ryan Christensen
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, US NIH, Bethesda, MD 20814, USA
| | - M A Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Tissue-Specific Functions of fem-2/PP2c Phosphatase and fhod-1/formin During Caenorhabditis elegans Embryonic Morphogenesis. G3-GENES GENOMES GENETICS 2018; 8:2277-2290. [PMID: 29720391 PMCID: PMC6027879 DOI: 10.1534/g3.118.200274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cytoskeleton is the basic machinery that drives many morphogenetic events. Elongation of the C. elegans embryo from a spheroid into a long, thin larva initially results from actomyosin contractility, mainly in the lateral epidermal seam cells, while the corresponding dorsal and ventral epidermal cells play a more passive role. This is followed by a later elongation phase involving muscle contraction. Early elongation is mediated by parallel genetic pathways involving LET-502/Rho kinase and MEL-11/MYPT myosin phosphatase in one pathway and FEM-2/PP2c phosphatase and PAK-1/p21 activated kinase in another. While the LET-502/MEL-11 pathway appears to act primarily in the lateral epidermis, here we show that FEM-2 can mediate early elongation when expressed in the dorsal and ventral epidermis. We also investigated the early elongation function of FHOD-1, a member of the formin family of actin nucleators and bundlers. Previous work showed that FHOD-1 acts in the LET-502/MEL-11 branch of the early elongation pathway as well as in muscle for sarcomere organization. Consistent with this, we found that lateral epidermal cell-specific expression of FHOD-1 is sufficient for elongation, and FHOD-1 effects on elongation appear to be independent of its role in muscle. Also, we found that fhod-1 encodes long and short isoforms that differ in the presence of a predicted coiled-coil domain. Based on tissue-specific expression constructions and an isoform-specific CRISPR allele, the two FHOD-1 isoforms show partially specialized epidermal or muscle function. Although fhod-1 shows only impenetrant elongation phenotypes, we were unable to detect redundancy with other C. elegans formin genes.
Collapse
|
10
|
Vuong-Brender TTK, Boutillon A, Rodriguez D, Lavilley V, Labouesse M. HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. PLoS One 2018; 13:e0193279. [PMID: 29466456 PMCID: PMC5821396 DOI: 10.1371/journal.pone.0193279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
Adherens junctions (AJs) are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space and in time during an in vivo morphogenetic event is still largely unknown, due to a lack of quantitative data. To address this issue, we inserted a functional Fluorescence Resonance Energy Transfer (FRET)-based force biosensor within HMP-1/α-catenin of Caenorhabditis elegans. We find that the tension exerted on HMP-1 has a cell-specific distribution, is actomyosin-dependent, but is regulated differently from the tension on the actin cortex during embryonic elongation. By using time-lapse analysis of mutants and tissue-specific rescue experiments, we confirm the role of VAB-9/Claudin as an actin bundle anchor. Nevertheless, the tension exerted on HMP-1 did not increase in the absence of VAB-9/Claudin, suggesting that HMP-1 activity is not upregulated to compensate for loss of VAB-9. Our data indicate that HMP-1 does not modulate HMR-1/E-cadherin turnover, is required to recruit junctional actin but not stress fiber-like actin bundles. Altogether, our data suggest that HMP-1/α-catenin acts to promote the mechanical integrity of adherens junctions.
Collapse
Affiliation(s)
- Thanh Thi Kim Vuong-Brender
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement—Institut de Biologie Paris Seine (LBD—IBPS), Paris, France
- Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, 1 rue Laurent Fries, llkirch, France
| | - Arthur Boutillon
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement—Institut de Biologie Paris Seine (LBD—IBPS), Paris, France
| | - David Rodriguez
- Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, 1 rue Laurent Fries, llkirch, France
| | - Vincent Lavilley
- Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, 1 rue Laurent Fries, llkirch, France
| | - Michel Labouesse
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement—Institut de Biologie Paris Seine (LBD—IBPS), Paris, France
- Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, 1 rue Laurent Fries, llkirch, France
| |
Collapse
|
11
|
Vuong-Brender TTK, Ben Amar M, Pontabry J, Labouesse M. The interplay of stiffness and force anisotropies drives embryo elongation. eLife 2017; 6. [PMID: 28181905 PMCID: PMC5371431 DOI: 10.7554/elife.23866] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/27/2017] [Indexed: 12/31/2022] Open
Abstract
The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognized, whereas the importance of tissue material properties, in particular stiffness, has received much less attention. Using Caenorhabditis elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin-II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical in driving embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo. DOI:http://dx.doi.org/10.7554/eLife.23866.001 Animals come in all shapes and size, from ants to elephants. In all cases, the tissues and organs in the animal’s body acquire their shape as the animal develops. Cells in developing tissues squeeze themselves or push and pull on one another, and the resulting forces generate the final shape. This process is called morphogenesis and it is often studied in a worm called Caenorhabditis elegans. This worm’s simplicity makes it easy to work with in the laboratory. Yet processes that occur in C. elegans also take place in other animals, including humans, and so the discoveries made using this worm can have far-reaching implications. As they develop, the embryos of C. elegans transform from a bean-shaped cluster of cells into the characteristic long shape of a worm, with the head at one end and the tail at the other. The force required to power this elongation is provided by the outer layer of cells of the embryo, known as the epidermis. In these cells, motor-like proteins called myosins pull against a mesh-like scaffold within the cell called the actin cytoskeleton; this pulling is thought to squeeze the embryo all around and cause it to grow longer. Six strips of cells, running from the head to the tail, make up the epidermis of a C. elegans embryo. Myosin is mostly active in two strips of cells that run along the two sides of the embryo. In the strips above and below these strips (in other words, those on the upper and lower sides of the worm), the myosins are much less active. However, it is not fully understood how this distribution of myosin causes worms to elongate only along the head-to-tail axis. Vuong-Brender et al. have now mapped the forces exerted in the cells of the worm’s epidermis. The experiments show that, in the strips of cells on the sides of the embryo, myosin’s activity causes the epidermis to constrict around the embryo, akin to a boa constrictor tightening around its prey. At the same time, the actin filaments in the other strips form rigid bundles oriented along the circumference that stiffen the cells in these strips. This prevents the constriction from causing the embryo to inflate at the top and bottom strips. As such, the only direction the embryo can expand is along the axis that runs from its head to its tail. Together, these findings suggest that a combination of oriented force and stiffness ensure that the embryo only elongates along the head-to-tail axis. The next step is to understand how this orientation and the coordination between cells are controlled at the molecular level. DOI:http://dx.doi.org/10.7554/eLife.23866.002
Collapse
Affiliation(s)
- Thanh Thi Kim Vuong-Brender
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD - IBPS), Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France.,Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, Illkirch, France
| | - Martine Ben Amar
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Pierre et Marie Curie, Université Paris Diderot, CNRS, Paris, France.,Institut Universitaire de Cancérologie, Faculté de Médecine, Université Pierre et Marie Curie-Paris, Paris, France
| | - Julien Pontabry
- Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, Illkirch, France
| | - Michel Labouesse
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD - IBPS), Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France.,Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, Illkirch, France
| |
Collapse
|