1
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
2
|
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J 2022; 289:5121-5136. [PMID: 34125483 PMCID: PMC9545688 DOI: 10.1111/febs.16075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Vertebrate pancreas organogenesis is a stepwise process regulated by a complex network of signaling and transcriptional events, progressively steering the early endoderm toward pancreatic fate. Many crucial players of this process have been identified, including signaling pathways, cis-regulatory elements, and transcription factors (TFs). Pancreas-associated transcription factor 1a (PTF1A) is one such TF, crucial for pancreas development. PTF1A mutations result in dramatic pancreatic phenotypes associated with severe complications, such as neonatal diabetes and impaired food digestion due to exocrine pancreatic insufficiency. Here, we present a brief overview of vertebrate pancreas development, centered on Ptf1a function and transcriptional regulation, covering similarities and divergences in three broadly studied organisms: human, mouse and zebrafish.
Collapse
Affiliation(s)
- Marta Duque
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - João Pedro Amorim
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
| |
Collapse
|
3
|
Miguel-Escalada I, Maestro MÁ, Balboa D, Elek A, Bernal A, Bernardo E, Grau V, García-Hurtado J, Sebé-Pedrós A, Ferrer J. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev Cell 2022; 57:1922-1936.e9. [PMID: 35998583 PMCID: PMC9426562 DOI: 10.1016/j.devcel.2022.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022]
Abstract
Sequence variants in cis-acting enhancers are important for polygenic disease, but their role in Mendelian disease is poorly understood. Redundancy between enhancers that regulate the same gene is thought to mitigate the pathogenic impact of enhancer mutations. Recent findings, however, have shown that loss-of-function mutations in a single enhancer near PTF1A cause pancreas agenesis and neonatal diabetes. Using mouse and human genetic models, we show that this enhancer activates an entire PTF1A enhancer cluster in early pancreatic multipotent progenitors. This leading role, therefore, precludes functional redundancy. We further demonstrate that transient expression of PTF1A in multipotent progenitors sets in motion an epigenetic cascade that is required for duct and endocrine differentiation. These findings shed insights into the genome regulatory mechanisms that drive pancreas differentiation. Furthermore, they reveal an enhancer that acts as a regulatory master key and is thus vulnerable to pathogenic loss-of-function mutations. The pancreas agenesis enhancer (EnhP) activates PTF1A in early pancreatic progenitors EnhP also activates other progenitor PTF1A enhancers This master key function explains why EnhP is vulnerable to loss-of-function mutations Transient PTF1A expression in progenitors controls pancreas growth and endocrinogenesis
Collapse
Affiliation(s)
- Irene Miguel-Escalada
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| | - Miguel Ángel Maestro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Diego Balboa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Aina Bernal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Edgar Bernardo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Vanessa Grau
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Javier García-Hurtado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Genetics and Genomics Section, Department of Metabolism, Digestion and Reproduction, National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London W12 0NN, UK; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| |
Collapse
|
4
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
5
|
Mona B, Villarreal J, Savage TK, Kollipara RK, Boisvert BE, Johnson JE. Positive autofeedback regulation of Ptf1a transcription generates the levels of PTF1A required to generate itch circuit neurons. Genes Dev 2020; 34:621-636. [PMID: 32241803 PMCID: PMC7197352 DOI: 10.1101/gad.332577.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/13/2020] [Indexed: 11/24/2022]
Abstract
In this study, Mona et al. set out to investigate the role of Ptf1a in specifying a subset of dorsal spinal cord inhibitory neurons in mice in vivo. The authors used CRISPR to target multiple noncoding sequences with putative cis-regulatory activity controlling Ptf1a and demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the levels of PTF1A necessary for generating correctly balanced neuronal circuits. Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating Ptf1a expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct cis-regulatory elements for Ptf1a in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing Pdyn and Gal. Although these mutants survive postnatally, at ∼3–5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.
Collapse
Affiliation(s)
- Bishakha Mona
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Juan Villarreal
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trisha K Savage
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brooke E Boisvert
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
6
|
Orchard P, White JS, Thomas PE, Mychalowych A, Kiseleva A, Hensley J, Allen B, Parker SCJ, Keegan CE. Genome-wide chromatin accessibility and transcriptome profiling show minimal epigenome changes and coordinated transcriptional dysregulation of hedgehog signaling in Danforth's short tail mice. Hum Mol Genet 2019; 28:736-750. [PMID: 30380057 PMCID: PMC6381317 DOI: 10.1093/hmg/ddy378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Danforth's short tail (Sd) mice provide an excellent model for investigating the underlying etiology of human caudal birth defects, which affect 1 in 10 000 live births. Sd animals exhibit aberrant axial skeleton, urogenital and gastrointestinal development similar to human caudal malformation syndromes including urorectal septum malformation, caudal regression, vertebral-anal-cardiac-tracheo-esophageal fistula-renal-limb (VACTERL) association and persistent cloaca. Previous studies have shown that the Sd mutation results from an endogenous retroviral (ERV) insertion upstream of the Ptf1a gene resulting in its ectopic expression at E9.5. Though the genetic lesion has been determined, the resulting epigenomic and transcriptomic changes driving the phenotype have not been investigated. Here, we performed ATAC-seq experiments on isolated E9.5 tailbud tissue, which revealed minimal changes in chromatin accessibility in Sd/Sd mutant embryos. Interestingly, chromatin changes were localized to a small interval adjacent to the Sd ERV insertion overlapping a known Ptf1a enhancer region, which is conserved in mice and humans. Furthermore, mRNA-seq experiments revealed increased transcription of Ptf1a target genes and, importantly, downregulation of hedgehog pathway genes. Reduced sonic hedgehog (SHH) signaling was confirmed by in situ hybridization and immunofluorescence suggesting that the Sd phenotype results, in part, from downregulated SHH signaling. Taken together, these data demonstrate substantial transcriptome changes in the Sd mouse, and indicate that the effect of the ERV insertion on Ptf1a expression may be mediated by increased chromatin accessibility at a conserved Ptf1a enhancer. We propose that human caudal dysgenesis disorders may result from dysregulation of hedgehog signaling pathways.
Collapse
Affiliation(s)
- Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - James S White
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil E Thomas
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anna Mychalowych
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anya Kiseleva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - John Hensley
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Jin K, Xiang M. Transcription factor Ptf1a in development, diseases and reprogramming. Cell Mol Life Sci 2019; 76:921-940. [PMID: 30470852 PMCID: PMC11105224 DOI: 10.1007/s00018-018-2972-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
The transcription factor Ptf1a is a crucial helix-loop-helix (bHLH) protein selectively expressed in the pancreas, retina, spinal cord, brain, and enteric nervous system. Ptf1a is preferably assembled into a transcription trimeric complex PTF1 with an E protein and Rbpj (or Rbpjl). In pancreatic development, Ptf1a is indispensable in controlling the expansion of multipotent progenitor cells as well as the specification and maintenance of the acinar cells. In neural tissues, Ptf1a is transiently expressed in the post-mitotic cells and specifies the inhibitory neuronal cell fates, mostly mediated by downstream genes such as Tfap2a/b and Prdm13. Mutations in the coding and non-coding regulatory sequences resulting in Ptf1a gain- or loss-of-function are associated with genetic diseases such as pancreatic and cerebellar agenesis in the rodent and human. Surprisingly, Ptf1a alone is sufficient to reprogram mouse or human fibroblasts into tripotential neural stem cells. Its pleiotropic functions in many biological processes remain to be deciphered in the future.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|