1
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Su Z, Fang M, Smolnikov A, Vafaee F, Dinger ME, Oates EC. Post-transcriptional regulation supports the homeostatic expression of mature RNA. Brief Bioinform 2024; 26:bbaf027. [PMID: 39913622 PMCID: PMC11801271 DOI: 10.1093/bib/bbaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 02/05/2025] [Indexed: 02/09/2025] Open
Abstract
Gene expression regulation is a sophisticated, multi-stage process, and its robustness is critical to normal cell function and the survival of an organism. Previous studies indicate that differential gene expression at the RNA level is typically attenuated at the protein level through translational regulation. However, how post-transcriptional regulation (PTR) influences expression change during the RNA maturation process remains unclear. In this study, we investigated this by quantifying the magnitude of expression change in precursor RNA and mature RNA across a vast range of different biological conditions. We analyzed bulk tissue RNA sequencing data from 4689 samples, including healthy and diseased tissues from human, chimpanzee, rhesus macaque, and murine sources. We demonstrated that PTR tends to support homeostatic expression of mature RNA by amplifying normal tissue-specific expression of precursor RNA, while reducing expression change of precursor RNA in disease contexts. Our study provides insight into the general influence of PTR on gene expression homeostasis. Our analysis also suggests that intronic reads in RNA-seq studies may contain under-utilized information about disease associations. Additionally, our findings may assist in identifying new disease biomarkers and more effective ways of altering gene expression as a therapeutic strategy.
Collapse
Affiliation(s)
- Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Mingyan Fang
- BGI Research, Building 1, Future Science and Technology Innovation Mansion, No. 59, Science and Technology 3rd Road, East Lake High-tech Development Zone, Wuhan City, Hubei Province, 430074, China
- BGI Australia, L6, CBCRC, QIMR Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, F22 Life, Earth and Environmental Sciences (LEES) Building, Camperdown NSW 2050, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- Department of Neurology, Sydney Children’s Hospital, High St, Randwick NSW 2031, Australia
| |
Collapse
|
3
|
Farhadi E, Khomeijani-Farahani M, Nikbakhsh R, Azizan A, Soltani S, Barekati H, Mahmoudi M. The potential role of circular RNAs in regulating p53 in different types of cancers. Pathol Res Pract 2024; 261:155488. [PMID: 39088876 DOI: 10.1016/j.prp.2024.155488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
P53 tumor suppressor is a major regulator of various cellular processes and functions. It has been reported that mutation or inactivation of p53 plays a crucial role in tumorigenesis in different types of cancers. Circular RNAs (circRNAs) are single-stranded non-coding RNAs that have significant post-transcriptional effects on the regulation of gene expression in various ways. These molecules can alter the expression and function of multiple genes and proteins. In the present study, we aimed to review circRNAs that regulate the expression, function, and stability of p53 and the possible interactions between these molecules and p53. Considering the importance of p53 in cancer and the network between p53 and circRNAs, future clinical trials targeting these circRNAs as therapeutic agents deserve worthy of attention.
Collapse
Affiliation(s)
- Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Khomeijani-Farahani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rambod Nikbakhsh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amin Azizan
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Barekati
- School of Nursing & Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Franco D, Sánchez-Fernández C, García-Padilla C, Lozano-Velasco E. Exploring the role non-coding RNAs during myocardial cell fate. Biochem Soc Trans 2024; 52:1339-1348. [PMID: 38775188 DOI: 10.1042/bst20231216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
Myocardial cell fate specification takes place during the early stages of heart development as the precardiac mesoderm is configured into two symmetrical sets of bilateral precursor cells. Molecular cues of the surrounding tissues specify and subsequently determine the early cardiomyocytes, that finally matured as the heart is completed at early postnatal stages. Over the last decade, we have greatly enhanced our understanding of the transcriptional regulation of cardiac development and thus of myocardial cell fate. The recent discovery of a novel layer of gene regulation by non-coding RNAs has flourished their implication in epigenetic, transcriptional and post-transcriptional regulation of cardiac development. In this review, we revised the current state-of-the-art knowledge on the functional role of non-coding RNAs during myocardial cell fate.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen 23071, Spain
- Fundación Medina, Granada, Spain
| |
Collapse
|
5
|
Lozano-Velasco E, Inácio JM, Sousa I, Guimarães AR, Franco D, Moura G, Belo JA. miRNAs in Heart Development and Disease. Int J Mol Sci 2024; 25:1673. [PMID: 38338950 PMCID: PMC10855082 DOI: 10.3390/ijms25031673] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders that affect the heart and blood vessels. They include conditions such as myocardial infarction, coronary artery disease, heart failure, arrhythmia, and congenital heart defects. CVDs are the leading cause of death worldwide. Therefore, new medical interventions that aim to prevent, treat, or manage CVDs are of prime importance. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the posttranscriptional level and play important roles in various biological processes, including cardiac development, function, and disease. Moreover, miRNAs can also act as biomarkers and therapeutic targets. In order to identify and characterize miRNAs and their target genes, scientists take advantage of computational tools such as bioinformatic algorithms, which can also assist in analyzing miRNA expression profiles, functions, and interactions in different cardiac conditions. Indeed, the combination of miRNA research and bioinformatic algorithms has opened new avenues for understanding and treating CVDs. In this review, we summarize the current knowledge on the roles of miRNAs in cardiac development and CVDs, discuss the challenges and opportunities, and provide some examples of recent bioinformatics for miRNA research in cardiovascular biology and medicine.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (D.F.)
| | - José Manuel Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| | - Inês Sousa
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - Ana Rita Guimarães
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (D.F.)
| | - Gabriela Moura
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - José António Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
6
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
7
|
Li Y, Hui JHL. Small RNAs in Cnidaria: A review. Evol Appl 2023; 16:354-364. [PMID: 36793685 PMCID: PMC9923473 DOI: 10.1111/eva.13445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
As fundamental components of RNA silencing, small RNA (sRNA) molecules ranging from 20 to 32 nucleotides in length have been found as potent regulators of gene expression and genome stability in many biological processes of eukaryotes. Three major small RNAs are active in animals, including the microRNA (miRNA), short interfering RNA (siRNA), and PIWI-interacting RNA (piRNA). Cnidarians, the sister group to bilaterians, are at a critical phylogenetic node to better model eukaryotic small RNA pathway evolution. To date, most of our understanding of sRNA regulation and its potential contribution to evolution has been limited to a few triploblastic bilaterian and plant models. The diploblastic nonbilaterians, including the cnidarians, are understudied in this regard. Therefore, this review will present the current-known small RNA information in cnidarians to enhance our understanding of the development of the small RNA pathways in early branch animals.
Collapse
Affiliation(s)
- Yiqian Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| | - Jerome H. L. Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| |
Collapse
|
8
|
Vernes SC, Devanna P, Hörpel SG, Alvarez van Tussenbroek I, Firzlaff U, Hagoort P, Hiller M, Hoeksema N, Hughes GM, Lavrichenko K, Mengede J, Morales AE, Wiesmann M. The pale spear-nosed bat: A neuromolecular and transgenic model for vocal learning. Ann N Y Acad Sci 2022; 1517:125-142. [PMID: 36069117 PMCID: PMC9826251 DOI: 10.1111/nyas.14884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.
Collapse
Affiliation(s)
- Sonja C. Vernes
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Paolo Devanna
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Stephen Gareth Hörpel
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ine Alvarez van Tussenbroek
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Uwe Firzlaff
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Peter Hagoort
- Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Nienke Hoeksema
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Graham M. Hughes
- School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Ariadna E. Morales
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Maximilian Wiesmann
- Department of Medical ImagingAnatomyRadboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer CenterNijmegenThe Netherlands
| |
Collapse
|
9
|
Neiro J, Sridhar D, Dattani A, Aboobaker A. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. eLife 2022; 11:79675. [PMID: 35997250 PMCID: PMC9522251 DOI: 10.7554/elife.79675] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Planarians have become an established model system to study regeneration and stem cells, but the regulatory elements in the genome remain almost entirely undescribed. Here, by integrating epigenetic and expression data we use multiple sources of evidence to predict enhancer elements active in the adult stem cell populations that drive regeneration. We have used ChIP-seq data to identify genomic regions with histone modifications consistent with enhancer activity, and ATAC-seq data to identify accessible chromatin. Overlapping these signals allowed for the identification of a set of high-confidence candidate enhancers predicted to be active in planarian adult stem cells. These enhancers are enriched for predicted transcription factor (TF) binding sites for TFs and TF families expressed in planarian adult stem cells. Footprinting analyses provided further evidence that these potential TF binding sites are likely to be occupied in adult stem cells. We integrated these analyses to build testable hypotheses for the regulatory function of TFs in stem cells, both with respect to how pluripotency might be regulated, and to how lineage differentiation programs are controlled. We found that our predicted GRNs were independently supported by existing TF RNAi/RNA-seq datasets, providing further evidence that our work predicts active enhancers that regulate adult stem cells and regenerative mechanisms.
Collapse
Affiliation(s)
- Jakke Neiro
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Divya Sridhar
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Gong LJ, Wang XY, Yao XD, Wu X, Gu WY. CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis 2021; 12:1081. [PMID: 34775467 PMCID: PMC8590696 DOI: 10.1038/s41419-021-04366-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Circular RNA (circRNA), a closed continuous loop formed by back-splicing, has been confirmed to be implicated in a variety of human diseases including cancers. However, the underlying molecular mechanism of circRNA regulating the progression of renal cell carcinoma (RCC) remains largely unclear. In the present study, we identified a novel circular RNA, circESRP1, that derived from the ESRP1 gene locus at 8q22.1 exons. Lower expression of circESRP1 was found in clear cell RCC (ccRCC) tissues and cell lines. Besides, circESRP1 expression level showed inversely correlated with the advanced tumor size, TNM stage and distant metastasis of ccRCC. The expression level of circESRP1 exhibited a positive correlation with CTCF protein but negatively correlated with miR-3942 in 79 ccRCC tissues. In vivo experiments, we found that overexpression of circESRP1 effectively repressed xenograft tumor growth and inhibited c-Myc-mediated EMT progression. CircESRP1 acted as a sponge to competitively bind with miR-3942 as confirmed through RNA pull-down, RIP and dual-luciferase reporter assays. Moreover, CTCF, a downstream target of miR-3942, was validated to specifically promote the circESRP1 transcript expression and regulated by circESRP1/miR-3942 pathway to form a positive feedback loop. We also revealed that the circESRP1/miR-3942/CTCF feedback loop regulated the ccRCC cell functions via c-Myc mediated EMT process. This study provides a novel regulatory model of circRNA via forming a positive-feedback loop that perpetuates the circESRP1/miR-3942/CTCF axis, suggesting that this signaling may serve as a novel target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Lin-Jing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Xin-Yuan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
| | - Wen-Yu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China.
| |
Collapse
|
11
|
Schultz DT, Francis WR, McBroome JD, Christianson LM, Haddock SHD, Green RE. A chromosome-scale genome assembly and karyotype of the ctenophore Hormiphora californensis. G3 (BETHESDA, MD.) 2021; 11:jkab302. [PMID: 34545398 PMCID: PMC8527503 DOI: 10.1093/g3journal/jkab302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
Here, we present a karyotype, a chromosome-scale genome assembly, and a genome annotation from the ctenophore Hormiphora californensis (Ctenophora: Cydippida: Pleurobrachiidae). The assembly spans 110 Mb in 44 scaffolds and 99.47% of the bases are contained in 13 scaffolds. Chromosome micrographs and Hi-C heatmaps support a karyotype of 13 diploid chromosomes. Hi-C data reveal three large heterozygous inversions on chromosome 1, and one heterozygous inversion shares the same gene order found in the genome of the ctenophore Pleurobrachia bachei. We find evidence that H. californensis and P. bachei share thirteen homologous chromosomes, and the same karyotype of 1n = 13. The manually curated PacBio Iso-Seq-based genome annotation reveals complex gene structures, including nested genes and trans-spliced leader sequences. This chromosome-scale assembly is a useful resource for ctenophore biology and will aid future studies of metazoan evolution and phylogenetics.
Collapse
Affiliation(s)
- Darrin T Schultz
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Warren R Francis
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Jakob D McBroome
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Lineage-Specific Genes and Family Expansions in Dictyostelid Genomes Display Expression Bias and Evolutionary Diversification during Development. Genes (Basel) 2021; 12:genes12101628. [PMID: 34681022 PMCID: PMC8535579 DOI: 10.3390/genes12101628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Gene duplications generate new genes that can contribute to expression changes and the evolution of new functions. Genomes often consist of gene families that undergo expansions, some of which occur in specific lineages that reflect recent adaptive diversification. In this study, lineage-specific genes and gene family expansions were studied across five dictyostelid species to determine when and how they are expressed during multicellular development. Lineage-specific genes were found to be enriched among genes with biased expression (predominant expression in one developmental stage) in each species and at most developmental time points, suggesting independent functional innovations of new genes throughout the phylogeny. Biased duplicate genes had greater expression divergence than their orthologs and paralogs, consistent with subfunctionalization or neofunctionalization. Lineage-specific expansions in particular had biased genes with both molecular signals of positive selection and high expression, suggesting adaptive genetic and transcriptional diversification following duplication. Our results present insights into the potential contributions of lineage-specific genes and families in generating species-specific phenotypes during multicellular development in dictyostelids.
Collapse
|
13
|
Sharma AR, Bhattacharya M, Bhakta S, Saha A, Lee SS, Chakraborty C. Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:355-371. [PMID: 34484862 PMCID: PMC8399087 DOI: 10.1016/j.omtn.2021.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), an emerging family member of RNAs, have gained importance in research due to their new functional roles in cellular physiology and disease progression. circRNAs are usually available in a wide range of cells and have shown tissue-specific expression as well as developmental specific expression. circRNAs are characterized by structural stability, conservation, and high abundance in the cell. In this review, we discuss the different models of biogenesis. The properties of circRNAs such as localization, structure and conserved pattern, stability, and expression specificity are also been illustrated. Furthermore, we discuss the biological functions of circRNAs such as microRNA (miRNA) sponging, cell cycle regulation, cell-to-cell communication, transcription regulation, translational regulation, disease diagnosis, and therapeutic potential. Finally, we discuss the recent research progress and future perspective of circRNAs. This review provides an understanding of potential diagnostic markers and the therapeutic potential of circRNAs, which are emerging daily.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| |
Collapse
|
14
|
Šečić E, Kogel KH, Ladera-Carmona MJ. Biotic stress-associated microRNA families in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153451. [PMID: 34119743 DOI: 10.1016/j.jplph.2021.153451] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Plants and animals utilize various regulatory mechanisms for control of gene expression during development in different tissues and cell types. About 30 years ago, a new mechanism of gene regulation, termed RNA interference (RNAi), was discovered and proved revolutionary for the mechanistic understanding of gene regulation. Noncoding RNAs, including short, 21-24 nucleotide (nt) long microRNAs (miRNAs), endogenously-generated from MIR genes, are key components of RNAi processes, by post-transcriptionally controlling transcripts with antisense complementarity through either translational repression or mRNA degradation. Since their discovery, important roles in regulation of ontogenetic development, cell differentiation, proliferation, and apoptosis in eukaryotes have been elucidated. In plants, miRNAs are known regulatory elements of basic endogenous functions and responses to the environmental stimuli. While the role of miRNAs in regulation of nutrient uptake, circadian clock and general response to abiotic stress is already well understood, a comprehensive understanding of their immune-regulatory roles in response to various biotic stress factors has not yet been achieved. This review summarizes the current understanding of the function of miRNAs and their targets in plants during interaction with microbial pathogens and symbionts. Additionally, we provide a consensus conclusion regarding the typical induction or repression response of conserved miRNA families to pathogenic and beneficial fungi, bacteria, and oomycetes, as well as an outlook of agronomic application of miRNAs in plants. Further investigation of plant miRNAs responsive to microbes, aided with novel sequencing and bioinformatics approaches for discovery and prediction in non-model organisms holds great potential for development of new forms of plant protection.
Collapse
Affiliation(s)
- Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Maria Jose Ladera-Carmona
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| |
Collapse
|
15
|
Abstract
The Ediacara Biota preserves the oldest fossil evidence of abundant, complex metazoans. Despite their significance, assigning individual taxa to specific phylogenetic groups has proved problematic. To better understand these forms, we identify developmentally controlled characters in representative taxa from the Ediacaran White Sea assemblage and compare them with the regulatory tools underlying similar traits in modern organisms. This analysis demonstrates that the genetic pathways for multicellularity, axial polarity, musculature, and a nervous system were likely present in some of these early animals. Equally meaningful is the absence of evidence for major differentiation of macroscopic body units, including distinct organs, localized sensory machinery or appendages. Together these traits help to better constrain the phylogenetic position of several key Ediacara taxa and inform our views of early metazoan evolution. An apparent lack of heads with concentrated sensory machinery or ventral nerve cords in such taxa supports the hypothesis that these evolved independently in disparate bilaterian clades.
Collapse
Affiliation(s)
- Scott D Evans
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Mary L Droser
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Douglas H Erwin
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| |
Collapse
|
16
|
In Silico Analysis of Common Long Noncoding RNAs in Schistosoma mansoni and Schistosoma haematobium. J Trop Med 2021; 2021:6617118. [PMID: 33628277 PMCID: PMC7899772 DOI: 10.1155/2021/6617118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Background Schistosomiasis caused by Schistosoma parasites is one of the most common parasitic infections worldwide. Genetic regulation of the genus Schistosoma, which has different developmental stages throughout its life, is quite complex. In these parasites, thousands of long noncoding RNAs (lncRNAs) estimated to be functional were identified. Identifying the transcripts expressed in common and detecting their functions for better understanding of the role of these lncRNAs require a comparative study. Methods Assembled RNA-seq datasets belonging to S. mansoni and S. haematobium were obtained from the National Center for Biotechnology. A basic local alignment search tool (BLASTN) analysis was conducted against previously constructed lncRNA library to identify the common lncRNAs between two species. LncRNAs target genes and their gene ontology annotation was performed. Results In S. mansoni and S. haematobium, 5132 and 3589 lncRNA transcripts were detected, respectively. These two species had 694 lncRNAs in common. A significant number of lncRNAs was determined to be transcribed from sex chromosomes. The frequently expressed lncRNAs appear to be involved in metabolic and biological regulation processes. Conclusions These two species share similar lncRNAs; thus, this finding is a clue that they might have similar functions. In sexual development, they especially might play important roles. Our results will provide important clues to further studies about interactions between human hosts and parasites and the infection mechanisms of Schistosoma parasites.
Collapse
|
17
|
Kjellin J, Avesson L, Reimegård J, Liao Z, Eichinger L, Noegel A, Glöckner G, Schaap P, Söderbom F. Abundantly expressed class of noncoding RNAs conserved through the multicellular evolution of dictyostelid social amoebas. Genome Res 2021; 31:436-447. [PMID: 33479022 PMCID: PMC7919456 DOI: 10.1101/gr.272856.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/15/2021] [Indexed: 01/26/2023]
Abstract
Aggregative multicellularity has evolved multiple times in diverse groups of eukaryotes, exemplified by the well-studied development of dictyostelid social amoebas, for example, Dictyostelium discoideum However, it is still poorly understood why multicellularity emerged in these amoebas while the majority of other members of Amoebozoa are unicellular. Previously, a novel type of noncoding RNA, Class I RNAs, was identified in D. discoideum and shown to be important for normal multicellular development. Here, we investigated Class I RNA evolution and its connection to multicellular development. We identified a large number of new Class I RNA genes by constructing a covariance model combined with a scoring system based on conserved upstream sequences. Multiple genes were predicted in representatives of each major group of Dictyostelia and expression analysis confirmed that our search approach identifies expressed Class I RNA genes with high accuracy and sensitivity and that the RNAs are developmentally regulated. Further studies showed that Class I RNAs are ubiquitous in Dictyostelia and share highly conserved structure and sequence motifs. In addition, Class I RNA genes appear to be unique to dictyostelid social amoebas because they could not be identified in outgroup genomes, including their closest known relatives. Our results show that Class I RNA is an ancient class of ncRNAs, likely to have been present in the last common ancestor of Dictyostelia dating back at least 600 million years. Based on previous functional analyses and the presented evolutionary investigation, we hypothesize that Class I RNAs were involved in evolution of multicellularity in Dictyostelia.
Collapse
Affiliation(s)
- Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - Lotta Avesson
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Uppsala S-75124, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala S-75124, Sweden
| | - Zhen Liao
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Angelika Noegel
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Gernot Glöckner
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| |
Collapse
|
18
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
19
|
Popovic I, Bierne N, Gaiti F, Tanurdžić M, Riginos C. Pre-introduction introgression contributes to parallel differentiation and contrasting hybridization outcomes between invasive and native marine mussels. J Evol Biol 2020; 34:175-192. [PMID: 33251632 DOI: 10.1111/jeb.13746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Non-native species experience novel selection pressures in introduced environments and may interbreed with native lineages. Species introductions therefore provide opportunities to investigate repeated patterns of adaptation and introgression across replicated contact zones. Here, we investigate genetic parallelism between multiple introduced populations of the invasive marine mussel, Mytilus galloprovincialis, in the absence (South Africa and California) and presence of hybridization with a native congener (Mytilus planulatus in Batemans Bay and Sydney Harbour, Australia). Repeatability in post-introduction differentiation from native-range populations varied between genetically distinct Atlantic and Mediterranean lineages, with Atlantic-derived introductions displaying high differentiation (maxFST > 0.4) and parallelism at outlier loci. Identification of long noncoding RNA transcripts (lncRNA) additionally allowed us to clarify that parallel responses are largely limited to protein-coding loci, with lncRNAs likely evolving under evolutionary constraints. Comparisons of independent hybrid zones revealed differential introgression most strongly in Batemans Bay, with an excess of M. galloprovincialis ancestry and resistance to introgression at loci differentiating parental lineages (M. planulatus and Atlantic M. galloprovincialis). Additionally, contigs putatively introgressed with divergent alleles from a closely related species, Mytilus edulis, showed stronger introgression asymmetries compared with genome-wide trends and also diverged in parallel in both Atlantic-derived introductions. These results suggest that divergent demographic histories experienced by introduced lineages, including pre-introduction introgression, influence contemporary admixture dynamics. Our findings build on previous investigations reporting contributions of historical introgression to intrinsic reproductive architectures shared between marine lineages and illustrate that interspecific introgression history can shape differentiation between colonizing populations and their hybridization with native congeners.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution UMR 5554, Université de Montpellier, CNRS-IRD-EPHE-UM, Montpellier, France
| | - Federico Gaiti
- Weill Cornell Medicine, New York, NY, USA.,New York Genome Center, New York, NY, USA
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Cynthia Riginos
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
20
|
Donato L, Scimone C, Alibrandi S, Rinaldi C, Sidoti A, D’Angelo R. Transcriptome Analyses of lncRNAs in A2E-Stressed Retinal Epithelial Cells Unveil Advanced Links between Metabolic Impairments Related to Oxidative Stress and Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:318. [PMID: 32326576 PMCID: PMC7222347 DOI: 10.3390/antiox9040318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
: Long non-coding RNAs (lncRNAs) are untranslated transcripts which regulate many biological processes. Changes in lncRNA expression pattern are well-known related to various human disorders, such as ocular diseases. Among them, retinitis pigmentosa, one of the most heterogeneous inherited disorder, is strictly related to oxidative stress. However, little is known about regulative aspects able to link oxidative stress to etiopathogenesis of retinitis. Thus, we realized a total RNA-Seq experiment, analyzing human retinal pigment epithelium cells treated by the oxidant agent N-retinylidene-N-retinylethanolamine (A2E), considering three independent experimental groups (untreated control cells, cells treated for 3 h and cells treated for 6 h). Differentially expressed lncRNAs were filtered out, explored with specific tools and databases, and finally subjected to pathway analysis. We detected 3,3'-overlapping ncRNAs, 107 antisense, 24 sense-intronic, four sense-overlapping and 227 lincRNAs very differentially expressed throughout all considered time points. Analyzed lncRNAs could be involved in several biochemical pathways related to compromised response to oxidative stress, carbohydrate and lipid metabolism impairment, melanin biosynthetic process alteration, deficiency in cellular response to amino acid starvation, unbalanced regulation of cofactor metabolic process, all leading to retinal cell death. The explored lncRNAs could play a relevant role in retinitis pigmentosa etiopathogenesis, and seem to be the ideal candidate for novel molecular markers and therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
21
|
Erwin DH. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 2020; 147:147/4/dev182899. [DOI: 10.1242/dev.182899] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
The origins and the early evolution of multicellular animals required the exploitation of holozoan genomic regulatory elements and the acquisition of new regulatory tools. Comparative studies of metazoans and their relatives now allow reconstruction of the evolution of the metazoan regulatory genome, but the deep conservation of many genes has led to varied hypotheses about the morphology of early animals and the extent of developmental co-option. In this Review, I assess the emerging view that the early diversification of animals involved small organisms with diverse cell types, but largely lacking complex developmental patterning, which evolved independently in different bilaterian clades during the Cambrian Explosion.
Collapse
Affiliation(s)
- Douglas H. Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, PO Box 37012, Washington, DC 20013-7012, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
22
|
N-terminal domain of the architectural protein CTCF has similar structural organization and ability to self-association in bilaterian organisms. Sci Rep 2020; 10:2677. [PMID: 32060375 PMCID: PMC7021899 DOI: 10.1038/s41598-020-59459-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
CTCF is the main architectural protein found in most of the examined bilaterian organisms. The cluster of the C2H2 zinc-finger domains involved in recognition of long DNA-binding motif is only part of the protein that is evolutionarily conserved, while the N-terminal domain (NTD) has different sequences. Here, we performed biophysical characterization of CTCF NTDs from various species representing all major phylogenetic clades of higher metazoans. With the exception of Drosophilides, the N-terminal domains of CTCFs show an unstructured organization and absence of folded regions in vitro. In contrast, NTDs of Drosophila melanogaster and virilis CTCFs contain unstructured folded regions that form tetramers and dimers correspondingly in vitro. Unexpectedly, most NTDs are able to self-associate in the yeast two-hybrid and co-immunoprecipitation assays. These results suggest that NTDs of CTCFs might contribute to the organization of CTCF-mediated long-distance interactions and chromosomal architecture.
Collapse
|
23
|
|
24
|
Abstract
Biological ageing and its mechanistic underpinnings are of immense biomedical and ecological significance. Ageing involves the decline of diverse biological functions and places a limit on a species’ maximum lifespan. Ageing is associated with epigenetic changes involving DNA methylation. Furthermore, an analysis of mammals showed that the density of CpG sites in gene promoters, which are targets for DNA methylation, is correlated with lifespan. Using 252 whole genomes and databases of animal age and promotor sequences, we show a pattern across vertebrates. We also derive a predictive lifespan clock based on CpG density in a selected set of promoters. The lifespan clock accurately predicts maximum lifespan in vertebrates (R2 = 0.76) from the density of CpG sites within only 42 selected promoters. Our lifespan clock provides a wholly new method for accurately estimating lifespan using genome sequences alone and enables estimation of this challenging parameter for both poorly understood and extinct species.
Collapse
|
25
|
Nikitin D, Kolosov N, Murzina A, Pats K, Zamyatin A, Tkachev V, Sorokin M, Kopylov P, Buzdin A. Retroelement-Linked H3K4me1 Histone Tags Uncover Regulatory Evolution Trends of Gene Enhancers and Feature Quickly Evolving Molecular Processes in Human Physiology. Cells 2019; 8:cells8101219. [PMID: 31597351 PMCID: PMC6830109 DOI: 10.3390/cells8101219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Retroelements (REs) are mobile genetic elements comprising ~40% of human DNA. They can reshape expression patterns of nearby genes by providing various regulatory sequences. The proportion of regulatory sequences held by REs can serve a measure of regulatory evolution rate of the respective genes and molecular pathways. Methods: We calculated RE-linked enrichment scores for individual genes and molecular pathways based on ENCODE project epigenome data for enhancer-specific histone modification H3K4me1 in five human cell lines. We identified consensus groups of molecular processes that are enriched and deficient in RE-linked H3K4me1 regulation. Results: We calculated H3K4me1 RE-linked enrichment scores for 24,070 human genes and 3095 molecular pathways. We ranked genes and pathways and identified those statistically significantly enriched and deficient in H3K4me1 RE-linked regulation. Conclusion: Non-coding RNA genes were statistically significantly enriched by RE-linked H3K4me1 regulatory modules, thus suggesting their high regulatory evolution rate. The processes of gene silencing by small RNAs, DNA metabolism/chromatin structure, sensory perception/neurotransmission and lipids metabolism showed signs of the fastest regulatory evolution, while the slowest processes were connected with immunity, protein ubiquitination/degradation, cell adhesion, migration and interaction, metals metabolism/ion transport, cell death, intracellular signaling pathways.
Collapse
Affiliation(s)
- Daniil Nikitin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
| | | | | | - Karina Pats
- ITMO University, 195251 Saint-Petersburg, Russia.
| | | | | | - Maxim Sorokin
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Philippe Kopylov
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Anton Buzdin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
26
|
McLain AT, Faulk C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging (Albany NY) 2019; 10:561-572. [PMID: 29661983 PMCID: PMC5940106 DOI: 10.18632/aging.101413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Gene promoters are evolutionarily conserved across holozoans and enriched in CpG sites, the target for DNA methylation. As animals age, the epigenetic pattern of DNA methylation degrades, with highly methylated CpG sites gradually becoming demethylated while CpG islands increase in methylation. Across vertebrates, aging is a trait that varies among species. We used this variation to determine whether promoter CpG density correlates with species’ maximum lifespan. Human promoter sequences were used to identify conserved regions in 131 mammals and a subset of 28 primate genomes. We identified approximately 1000 gene promoters (5% of the total), that significantly correlated CpG density with lifespan. The correlations were performed via the phylogenetic least squares method to account for trait similarity by common descent using phylogenetic branch lengths. Gene set enrichment analysis revealed no significantly enriched pathways or processes, consistent with the hypothesis that aging is not under positive selection. However, within both mammals and primates, 95% of the promoters showed a positive correlation between increasing CpG density and species lifespan, and two thirds were shared between the primate subset and mammalian datasets. Thus, these genes may require greater buffering capacity against age-related dysregulation of DNA methylation in longer-lived species.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biology and Chemistry, College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY 13502, USA
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN 55108, USA
| |
Collapse
|
27
|
Pluripotency and the origin of animal multicellularity. Nature 2019; 570:519-522. [PMID: 31189954 DOI: 10.1038/s41586-019-1290-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/16/2019] [Indexed: 01/01/2023]
Abstract
A widely held-but rarely tested-hypothesis for the origin of animals is that they evolved from a unicellular ancestor, with an apical cilium surrounded by a microvillar collar, that structurally resembled modern sponge choanocytes and choanoflagellates1-4. Here we test this view of animal origins by comparing the transcriptomes, fates and behaviours of the three primary sponge cell types-choanocytes, pluripotent mesenchymal archaeocytes and epithelial pinacocytes-with choanoflagellates and other unicellular holozoans. Unexpectedly, we find that the transcriptome of sponge choanocytes is the least similar to the transcriptomes of choanoflagellates and is significantly enriched in genes unique to either animals or sponges alone. By contrast, pluripotent archaeocytes upregulate genes that control cell proliferation and gene expression, as in other metazoan stem cells and in the proliferating stages of two unicellular holozoans, including a colonial choanoflagellate. Choanocytes in the sponge Amphimedon queenslandica exist in a transient metastable state and readily transdifferentiate into archaeocytes, which can differentiate into a range of other cell types. These sponge cell-type conversions are similar to the temporal cell-state changes that occur in unicellular holozoans5. Together, these analyses argue against homology of sponge choanocytes and choanoflagellates, and the view that the first multicellular animals were simple balls of cells with limited capacity to differentiate. Instead, our results are consistent with the first animal cell being able to transition between multiple states in a manner similar to modern transdifferentiating and stem cells.
Collapse
|
28
|
Non-coding RNAome of RPE cells under oxidative stress suggests unknown regulative aspects of Retinitis pigmentosa etiopathogenesis. Sci Rep 2018; 8:16638. [PMID: 30413775 PMCID: PMC6226517 DOI: 10.1038/s41598-018-35086-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
The discovery of thousands of non-coding RNAs has revolutionized molecular biology, being implicated in several biological processes and diseases. To clarify oxidative stress role on Retinitis pigmentosa, a very heterogeneous and inherited ocular disorder group characterized by progressive retinal degeneration, we realized a comparative transcriptome analysis of human retinal pigment epithelium cells, comparing two groups, one treated with oxLDL and one untreated, in four time points (1 h, 2 h, 4 h, 6 h). Data analysis foresaw a complex pipeline, starting from CLC Genomics Workbench, STAR and TopHat2/TopHat-Fusion alignment comparisons, followed by transcriptomes assembly and expression quantification. We then filtered out non-coding RNAs and continued the computational analysis roadmap with specific tools and databases for long non-coding RNAs (FEELnc), circular RNAs (CIRCexplorer, UROBORUS, CIRI, KNIFE, CircInteractome) and piwi-interacting RNAs (piRNABank, piRNA Cluster, piRBase, PILFER). Finally, all detected non-coding RNAs underwent pathway analysis by Cytoscape software. Eight-hundred and fifty-four non-coding RNAs, between long non-coding RNAs and PIWI-interacting, were differentially expressed throughout all considered time points, in treated and untreated samples. These non-coding RNAs target host genes involved in several biochemical pathways are related to compromised response to oxidative stress, visual functions, synaptic impairment of retinal neurotransmission, impairment of the interphotoreceptor matrix and blood – retina barrier, all leading to retinal cell death. These data suggest that non-coding RNAs could play a relevant role in Retinitis pigmentosa etiopathogenesis.
Collapse
|
29
|
Schaefke B, Sun W, Li YS, Fang L, Chen W. The evolution of posttranscriptional regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1485. [PMID: 29851258 DOI: 10.1002/wrna.1485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
"DNA makes RNA makes protein." After transcription, mRNAs undergo a series of intertwining processes to be finally translated into functional proteins. The "posttranscriptional" regulation (PTR) provides cells an extended option to fine-tune their proteomes. To meet the demands of complex organism development and the appropriate response to environmental stimuli, every step in these processes needs to be finely regulated. Moreover, changes in these regulatory processes are important driving forces underlying the evolution of phenotypic differences across different species. The major PTR mechanisms discussed in this review include the regulation of splicing, polyadenylation, decay, and translation. For alternative splicing and polyadenylation, we mainly discuss their evolutionary dynamics and the genetic changes underlying the regulatory differences in cis-elements versus trans-factors. For mRNA decay and translation, which, together with transcription, determine the cellular RNA or protein abundance, we focus our discussion on how their divergence coordinates with transcriptional changes to shape the evolution of gene expression. Then to highlight the importance of PTR in the evolution of higher complexity, we focus on their roles in two major phenomena during eukaryotic evolution: the evolution of multicellularity and the division of labor between different cell types and tissues; and the emergence of diverse, often highly specialized individual phenotypes, especially those concerning behavior in eusocial insects. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Regulation RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California San Francisco, San Francisco
| | - Yi-Sheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
30
|
Paps J. What Makes an Animal? The Molecular Quest for the Origin of the Animal Kingdom. Integr Comp Biol 2018; 58:654-665. [DOI: 10.1093/icb/icy036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jordi Paps
- School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
31
|
Gaiti F, Degnan BM, Tanurdžić M. Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biol 2018; 15:696-702. [PMID: 29616867 PMCID: PMC6152434 DOI: 10.1080/15476286.2018.1460166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023] Open
Abstract
How animals evolved from a single-celled ancestor over 700 million years ago is poorly understood. Recent transcriptomic and chromatin analyses in the sponge Amphimedon queenslandica, a morphologically-simple representative of one of the oldest animal phyletic lineages, have shed light on what innovations in the genome and its regulation underlie the emergence of animal multicellularity. Comparisons of the regulatory genome of this sponge with those of more complex bilaterian model species and even simpler unicellular relatives have revealed that fundamental changes in genome regulatory complexity accompanied the evolution of animal multicellularity. Here, we review and discuss the results of these recent investigations by specifically focusing on the contribution of long non-coding RNAs to the evolution of the animal regulatory genome.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Wanke KA, Devanna P, Vernes SC. Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 3'UTRome. Biol Psychiatry 2018; 83:548-557. [PMID: 29289333 DOI: 10.1016/j.biopsych.2017.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1% to 2% of the human genome. With the advent of whole genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and noncoding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of noncoding variants identified per individual can be overwhelming, making it prudent to focus on noncoding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3'UTRome is a region of the noncoding genome that perfectly fulfills these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3'UTRome as binding sites for microRNAs or RNA binding proteins, or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3'UTRome will lead to the identification of new risk factors, new candidate disease genes, and a better understanding of the molecular mechanisms contributing to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kai A Wanke
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
34
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
35
|
Lakhotia SC. Non-coding RNAs demystify constitutive heterochromatin as essential modulator of epigenotype. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0221-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Grau-Bové X, Torruella G, Donachie S, Suga H, Leonard G, Richards TA, Ruiz-Trillo I. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 2017; 6:26036. [PMID: 28726632 PMCID: PMC5560861 DOI: 10.7554/elife.26036] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest unicellular relatives (the Holozoa), including four new genomes: three Ichthyosporea and Corallochytrium limacisporum. Here, we show that the earliest animals were shaped by dynamic changes in genome architecture before the emergence of multicellularity: an early burst of gene diversity in the ancestor of Holozoa, enriched in transcription factors and cell adhesion machinery, was followed by multiple and differently-timed episodes of synteny disruption, intron gain and genome expansions. Thus, the foundations of animal genome architecture were laid before the origin of complex multicellularity – highlighting the necessity of a unicellular perspective to understand early animal evolution. DOI:http://dx.doi.org/10.7554/eLife.26036.001 Hundreds of millions of years ago, some single-celled organisms gained the ability to work together and form multicellular organisms. This transition was a major step in evolution and took place at separate times in several parts of the tree of life, including in animals, plants, fungi and algae. Animals are some of the most complex organisms on Earth. Their single-celled ancestors were also quite genetically complex themselves and their genomes (the complete set of the organism’s DNA) already contained many genes that now coordinate the activity of the cells in a multicellular organism. The genome of an animal typically has certain features: it is large, diverse and contains many segments (called introns) that are not genes. By seeing if the single-celled relatives of animals share these traits, it is possible to learn more about when specific genetic features first evolved, and whether they are linked to the origin of animals. Now, Grau-Bové et al. have studied the genomes of several of the animal kingdom’s closest single-celled relatives using a technique called whole genome sequencing. This revealed that there was a period of rapid genetic change in the single-celled ancestors of animals during which their genes became much more diverse. Another ‘explosion’ of diversity happened after animals had evolved. Furthermore, the overall amount of the genomic content inside cells and the number of introns found in the genome rapidly increased in separate, independent events in both animals and their single-celled ancestors. Future research is needed to investigate whether other multicellular life forms – such as plants, fungi and algae – originated in the same way as animal life. Understanding how the genetic material of animals evolved also helps us to understand the genetic structures that affect our health. For example, genes that coordinate the behavior of cells (and so are important for multicellular organisms) also play a role in cancer, where cells break free of this regulation to divide uncontrollably. DOI:http://dx.doi.org/10.7554/eLife.26036.002
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Barcelona, Catalonia, Spain
| | - Guifré Torruella
- Unité d'Ecologie, Systématique et Evolution, Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Stuart Donachie
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, United States.,Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, United States
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Guy Leonard
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Thomas A Richards
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys, Barcelona, Catalonia, Spain
| |
Collapse
|
37
|
Su YH, Yu JK. EvoDevo: Changes in developmental controls underlying the evolution of animal body plans. Dev Biol 2017; 427:177-178. [PMID: 28559107 DOI: 10.1016/j.ydbio.2017.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
38
|
Gaiti F, Jindrich K, Fernandez-Valverde SL, Roper KE, Degnan BM, Tanurdžić M. Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. eLife 2017; 6:22194. [PMID: 28395144 PMCID: PMC5429095 DOI: 10.7554/elife.22194] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/27/2017] [Indexed: 01/24/2023] Open
Abstract
Combinatorial patterns of histone modifications regulate developmental and cell type-specific gene expression and underpin animal complexity, but it is unclear when this regulatory system evolved. By analysing histone modifications in a morphologically-simple, early branching animal, the sponge Amphimedonqueenslandica, we show that the regulatory landscape used by complex bilaterians was already in place at the dawn of animal multicellularity. This includes distal enhancers, repressive chromatin and transcriptional units marked by H3K4me3 that vary with levels of developmental regulation. Strikingly, Amphimedon enhancers are enriched in metazoan-specific microsyntenic units, suggesting that their genomic location is extremely ancient and likely to place constraints on the evolution of surrounding genes. These results suggest that the regulatory foundation for spatiotemporal gene expression evolved prior to the divergence of sponges and eumetazoans, and was necessary for the evolution of animal multicellularity.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Katia Jindrich
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | | | - Kathrein E Roper
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|