1
|
Mevissen TET, Kümmecke M, Schmid EW, Farnung L, Walter JC. STK19 positions TFIIH for cell-free transcription-coupled DNA repair. Cell 2024; 187:7091-7106.e24. [PMID: 39547228 PMCID: PMC11645862 DOI: 10.1016/j.cell.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024]
Abstract
In transcription-coupled nucleotide excision repair (TC-NER), stalled RNA polymerase II (RNA Pol II) binds CSB and CRL4CSA, which cooperate with UVSSA and ELOF1 to recruit TFIIH. To explore the mechanism of TC-NER, we recapitulated this reaction in vitro. When a plasmid containing a site-specific lesion is transcribed in frog egg extract, error-free repair is observed that depends on CSB, CRL4CSA, UVSSA, and ELOF1. Repair also requires STK19, a factor previously implicated in transcription recovery after UV exposure. A 1.9-Å cryo-electron microscopy structure shows that STK19 binds the TC-NER complex through CSA and the RPB1 subunit of RNA Pol II. Furthermore, AlphaFold predicts that STK19 interacts with the XPD subunit of TFIIH, and disrupting this interface impairs cell-free repair. Molecular modeling suggests that STK19 positions TFIIH ahead of RNA Pol II for lesion verification. Our analysis of cell-free TC-NER suggests that STK19 couples RNA Pol II stalling to downstream repair events.
Collapse
Affiliation(s)
- Tycho E T Mevissen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Maximilian Kümmecke
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ernst W Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Passaretti P, Cvetkovic MA, Costa A, Gambus A. Protocol for the purification of replisomes from the Xenopus laevis egg extract system for single-particle cryo-EM analysis. STAR Protoc 2024; 5:103237. [PMID: 39126657 PMCID: PMC11364017 DOI: 10.1016/j.xpro.2024.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Here, we present a large-scale FLAG immunoprecipitation protocol to isolate large protein complexes driving DNA replication at replicating chromatin assembled in Xenopus laevis egg extract. We describe how to prepare demembranated sperm nuclei (DNA) and low-speed supernatant egg extract (LSS) and present detailed procedures for sample preparation and application onto grids for negative stain electron microscopy (NS-EM) and cryoelectron microscopy (cryo-EM). For complete details on the use and execution of this protocol, please refer to Cvetkovic et al.1.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, B15 2TT Birmingham, UK
| | - Milos A Cvetkovic
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, B15 2TT Birmingham, UK.
| |
Collapse
|
3
|
Terui R, Berger SE, Sambel LA, Song D, Chistol G. Single-molecule imaging reveals the mechanism of bidirectional replication initiation in metazoa. Cell 2024; 187:3992-4009.e25. [PMID: 38866019 PMCID: PMC11283366 DOI: 10.1016/j.cell.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate. How two helicases are correctly assembled and activated at each origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered that replication initiation is surprisingly dynamic. First, TopBP1 transiently binds to the origin and dissociates before the start of DNA synthesis. Second, two Cdc45 are recruited together, even though Cdc45 alone cannot dimerize. Next, two copies of DONSON and two GINS simultaneously arrive at the origin, completing the assembly of two CMG helicases. Finally, RecQL4 is recruited to the CMG⋅DONSON⋅DONSON⋅CMG complex and promotes DONSON dissociation and CMG activation via its ATPase activity.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Scott E Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Larissa A Sambel
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dan Song
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gheorghe Chistol
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA; BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Tatsukawa K, Sakamoto R, Kawasoe Y, Kubota Y, Tsurimoto T, Takahashi T, Ohashi E. Resection of DNA double-strand breaks activates Mre11-Rad50-Nbs1- and Rad9-Hus1-Rad1-dependent mechanisms that redundantly promote ATR checkpoint activation and end processing in Xenopus egg extracts. Nucleic Acids Res 2024; 52:3146-3163. [PMID: 38349040 PMCID: PMC11014350 DOI: 10.1093/nar/gkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 04/14/2024] Open
Abstract
Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.
Collapse
Affiliation(s)
- Kensuke Tatsukawa
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Reihi Sakamoto
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kawasoe
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumiko Kubota
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Toshiki Tsurimoto
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuro S Takahashi
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eiji Ohashi
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
5
|
Cameron G, Gruszka D, Xie S, Kaya Ç, Nasmyth KA, Srinivasan M, Yardimci H. Sister chromatid cohesion establishment during DNA replication termination. Science 2024; 384:119-124. [PMID: 38484038 PMCID: PMC7615807 DOI: 10.1126/science.adf0224] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
Newly copied sister chromatids are tethered together by the cohesin complex, but how sister chromatid cohesion coordinates with DNA replication is poorly understood. Prevailing models suggest that cohesin complexes, bound to DNA before replication, remain behind the advancing replication fork to keep sister chromatids together. By visualizing single replication forks colliding with preloaded cohesin complexes, we find that the replisome instead pushes cohesin to where a converging replisome is met. Whereas the converging replisomes are removed during DNA replication termination, cohesin remains on nascent DNA and provides cohesion. Additionally, we show that CMG (CDC45-MCM2-7-GINS) helicase disassembly during replication termination is vital for proper cohesion in budding yeast. Together, our results support a model wherein sister chromatid cohesion is established during DNA replication termination.
Collapse
Affiliation(s)
| | | | - Sherry Xie
- The Francis Crick Institute; London, United Kingdom
| | - Çağla Kaya
- The Francis Crick Institute; London, United Kingdom
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford; Oxford, United Kingdom
| | | | | |
Collapse
|
6
|
Terui R, Berger S, Sambel L, Song D, Chistol G. Single-Molecule Imaging Reveals the Mechanism of Bidirectional Replication Initiation in Metazoa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587265. [PMID: 38585807 PMCID: PMC10996697 DOI: 10.1101/2024.03.28.587265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG (Cdc45•Mcm2-7•GINS) helicases at each origin. This requires several firing factors (including TopBP1, RecQL4, DONSON) whose exact roles remain unclear. How two helicases are correctly assembled and activated at every single origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered a surprisingly dynamic picture of initiation. Firing factors transiently bind origins but do not travel with replisomes. Two Cdc45 simultaneously arrive at each origin and two GINS are recruited together, even though neither protein can dimerize. The synchronized delivery of two GINS is mediated by DONSON, which acts as a dimerization scaffold. We show that RecQL4 promotes DONSON dissociation and facilitates helicase activation. The high fidelity of bidirectional origin firing can be explained by a Hopfield-style kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Scott Berger
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
| | - Larissa Sambel
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Dan Song
- Current Address: Eikon Therapeutics Inc
| | - Gheorghe Chistol
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
- Cancer Biology Program, Stanford School of Medicine, Stanford CA94305
- Stanford Cancer Institute, Stanford School of Medicine, Stanford CA94305
- BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford CA94305
| |
Collapse
|
7
|
Kawasoe Y, Shimokawa S, Gillespie PJ, Blow JJ, Tsurimoto T, Takahashi TS. The Atad5 RFC-like complex is the major unloader of proliferating cell nuclear antigen in Xenopus egg extracts. J Biol Chem 2024; 300:105588. [PMID: 38141767 PMCID: PMC10827553 DOI: 10.1016/j.jbc.2023.105588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.
Collapse
Affiliation(s)
| | - Sakiko Shimokawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Peter J Gillespie
- Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - J Julian Blow
- Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
8
|
Aze A, Hutchins JRA, Maiorano D. Studying Translesion DNA Synthesis Using Xenopus In Vitro Systems. Methods Mol Biol 2024; 2740:21-36. [PMID: 38393467 DOI: 10.1007/978-1-0716-3557-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cell-free extracts derived from Xenopus eggs have been widely used to decipher molecular pathways involved in several cellular processes including DNA synthesis, the DNA damage response, and genome integrity maintenance. We set out assays using Xenopus cell-free extracts to study translesion DNA synthesis (TLS), a branch of the DNA damage tolerance pathway that allows replication of damaged DNA. Using this system, we were able to recapitulate TLS activities that occur naturally in vivo during early embryogenesis. This chapter describes protocols to detect chromatin-bound TLS factors by western blotting and immunofluorescence microscopy upon induction of DNA damage by UV irradiation, monitor TLS-dependent mutagenesis, and perform proteomic screening.
Collapse
Affiliation(s)
- Antoine Aze
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - James R A Hutchins
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Colding-Christensen CS, Kakulidis ES, Arroyo-Gomez J, Hendriks IA, Arkinson C, Fábián Z, Gambus A, Mailand N, Duxin JP, Nielsen ML. Profiling ubiquitin signalling with UBIMAX reveals DNA damage- and SCF β-Trcp1-dependent ubiquitylation of the actin-organizing protein Dbn1. Nat Commun 2023; 14:8293. [PMID: 38097601 PMCID: PMC10721886 DOI: 10.1038/s41467-023-43873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Ubiquitin widely modifies proteins, thereby regulating most cellular functions. The complexity of ubiquitin signalling necessitates unbiased methods enabling global detection of dynamic protein ubiquitylation. Here, we describe UBIMAX (UBiquitin target Identification by Mass spectrometry in Xenopus egg extracts), which enriches ubiquitin-conjugated proteins and quantifies regulation of protein ubiquitylation under precise and adaptable conditions. We benchmark UBIMAX by investigating DNA double-strand break-responsive ubiquitylation events, identifying previously known targets and revealing the actin-organizing protein Dbn1 as a major target of DNA damage-induced ubiquitylation. We find that Dbn1 is targeted for proteasomal degradation by the SCFβ-Trcp1 ubiquitin ligase, in a conserved mechanism driven by ATM-mediated phosphorylation of a previously uncharacterized β-Trcp1 degron containing an SQ motif. We further show that this degron is sufficient to induce DNA damage-dependent protein degradation of a model substrate. Collectively, we demonstrate UBIMAX's ability to identify targets of stimulus-regulated ubiquitylation and reveal an SCFβ-Trcp1-mediated ubiquitylation mechanism controlled directly by the apical DNA damage response kinases.
Collapse
Affiliation(s)
- Camilla S Colding-Christensen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ellen S Kakulidis
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Javier Arroyo-Gomez
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ivo A Hendriks
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Connor Arkinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- California Institute for Quantitative Biosciences and Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Zita Fábián
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Niels Mailand
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Julien P Duxin
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Michael L Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
10
|
Berger S, Chistol G. Visualizing the dynamics of DNA replication and repair at the single-molecule level. Methods Cell Biol 2023; 182:109-165. [PMID: 38359974 PMCID: PMC11246157 DOI: 10.1016/bs.mcb.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
During cell division, the genome of each eukaryotic cell is copied by thousands of replisomes-large protein complexes consisting of several dozen proteins. Recent studies suggest that the eukaryotic replisome is much more dynamic than previously thought. To directly visualize replisome dynamics in a physiological context, we recently developed a single-molecule approach for imaging replication proteins in Xenopus egg extracts. These extracts contain all the soluble nuclear proteins and faithfully recapitulate DNA replication and repair in vitro, serving as a powerful platform for studying the mechanisms of genome maintenance. Here we present detailed protocols for conducting single-molecule experiments in nuclear egg extracts and preparing key reagents. This workflow can be easily adapted to visualize the dynamics and function of other proteins implicated in DNA replication and repair.
Collapse
Affiliation(s)
- Scott Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA, United States
| | - Gheorghe Chistol
- Biophysics Program, Stanford School of Medicine, Stanford, CA, United States; Chemical and Systems Biology Department, Cancer Biology Program, Stanford School of Medicine, Stanford, CA, United States.
| |
Collapse
|
11
|
Shan Z, Li S, Yu C, Bai S, Zhang J, Tang Y, Wang Y, Irwin DM, Li J, Wang Z. Embryonic and skeletal development of the albino African clawed frog (Xenopus laevis). J Anat 2023; 242:1051-1066. [PMID: 36708289 PMCID: PMC10184547 DOI: 10.1111/joa.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
The normal stages of embryonic development for wild-type Xenopus laevis were established by Nieuwkoop and Faber in 1956, a milestone in the history of understanding embryonic development. However, this work lacked photographic images and staining for skeleton structures from the corresponding stages. Here, we provide high-quality images of embryonic morphology and skeleton development to facilitate studies on amphibian development. On the basis of the classical work, we selected the albino mutant of X. laevis as the observation material to restudy embryonic development in this species. The lower level of pigmentation makes it easier to interpret histochemical experiments. At 23°C, albino embryos develop at the same rate as wild-type embryos, which can be divided into 66 stages as they develop into adults in about 58 days. We described the complete embryonic development system for X. laevis, supplemented with pictures of limb and skeleton development that are missing from previous studies, and summarized the characteristics and laws of limb and skeleton development. Our study should aid research into the development of X. laevis and the evolution of amphibians.
Collapse
Affiliation(s)
- Zhixin Shan
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Shanshan Li
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Chenghua Yu
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shibin Bai
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Junpeng Zhang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Yining Tang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Yutong Wang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - David M. Irwin
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Jun Li
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhe Wang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
12
|
Mevissen TET, Prasad AV, Walter JC. TRIM21-dependent target protein ubiquitination mediates cell-free Trim-Away. Cell Rep 2023; 42:112125. [PMID: 36807144 PMCID: PMC10435667 DOI: 10.1016/j.celrep.2023.112125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor and E3 ubiquitin ligase that promotes destruction of a broad range of pathogens. TRIM21 also underlies the antibody-dependent protein targeting method Trim-Away. Current evidence suggests that TRIM21 binding to antibodies leads to formation of a self-anchored K63 ubiquitin chain on the N terminus of TRIM21 that triggers the destruction of TRIM21, antibody, and target protein. Here, we report that addition of antibody and TRIM21 to Xenopus egg extracts promotes efficient degradation of endogenous target proteins, establishing cell-free Trim-Away as a powerful tool to interrogate protein function. Chemical methylation of TRIM21 had no effect on target proteolysis, whereas deletion of all lysine residues in targets abolished their ubiquitination and proteasomal degradation. These results demonstrate that target protein, but not TRIM21, polyubiquitination is required for Trim-Away, and they suggest that current models of TRIM21 function should be fundamentally revised.
Collapse
Affiliation(s)
- Tycho E T Mevissen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| | - Anisa V Prasad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
13
|
BRD4 promotes resection and homology-directed repair of DNA double-strand breaks. Nat Commun 2022; 13:3016. [PMID: 35641523 PMCID: PMC9156784 DOI: 10.1038/s41467-022-30787-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Double-strand breaks (DSBs) are one of the most toxic forms of DNA damage and represent a major source of genomic instability. Members of the bromodomain and extra-terminal (BET) protein family are characterized as epigenetic readers that regulate gene expression. However, evidence suggests that BET proteins also play a more direct role in DNA repair. Here, we establish a cell-free system using Xenopus egg extracts to elucidate the gene expression-independent functions of BET proteins in DSB repair. We identify the BET protein BRD4 as a critical regulator of homologous recombination and describe its role in stimulating DNA processing through interactions with the SWI/SNF chromatin remodeling complex and resection machinery. These results establish BRD4 as a multifunctional regulator of chromatin binding that links transcriptional activity and homology-directed repair. BRD4 is a multifunctional regulator of chromatin binding that plays a direct role in DNA double-strand break repair. BRD4 interacts with the SWI/SNF chromatin remodeling complex and resection machinery to promote homologous recombination.
Collapse
|
14
|
Species variations in XRCC1 recruitment strategies for FHA domain-containing proteins. DNA Repair (Amst) 2022; 110:103263. [PMID: 35026705 PMCID: PMC9282668 DOI: 10.1016/j.dnarep.2021.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
DNA repair scaffolds XRCC1 and XRCC4 utilize a phosphopeptide FHA domain binding motif (FBM) of the form Y-x-x-pS-pT-D-E that supports recruitment of three identified FHA domain-containing DNA repair proteins: polynucleotide kinase/phosphatase (PNKP), aprataxin (APTX), and a third protein, APLF, that functions as a scaffold in support of non-homologous end joining (NHEJ). Mammalian dimeric XRCC4 is able to interact with two of these proteins at any given time, while monomeric XRCC1 binds only one. However, sequence analysis indicates that amphibian and teleost XRCC1 generally contain two FHA binding motifs. X1-FBM1, is similar to the single mammalian XRCC1 FBM and probably functions similarly. X1-FBM2, is more similar to mammalian XRCC4 FBM; it is located closer to the XRCC1 BRCT1 domain and probably is less discriminating among its three likely binding partners. Availability of an additional PNKP or APTX recruitment motif may alleviate the bottleneck that results from using a single FBM motif for recruitment of multiple repair factors. Alternatively, recruitment of APLF by X1-FBM2 may function to rescue a misdirected or unsuccessful SSB repair response by redirecting the damaged DNA to the NHEJ pathway, - a need that results from the ambiguity of the PARP1 signal regarding the nature of the damage. Evaluation of XRCC4 FBMs in acanthomorphs, which account for a majority of the reported teleost sequences, reveals the presence of an additional XRCC4-like paralog, distinct from other previously described members of the XRCC4 superfamily. The FBM is typically absent in acanthomorph XRCC4, but present in the XRCC4-like paralog. Modeling suggests that XRCC4 and its paralog may form homodimers or XRCC4-XRCC4-like heterodimers.
Collapse
|
15
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Luong TT, Bernstein KA. Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes (Basel) 2021; 12:1919. [PMID: 34946868 PMCID: PMC8701316 DOI: 10.3390/genes12121919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
RECQL4 is a member of the evolutionarily conserved RecQ family of 3' to 5' DNA helicases. RECQL4 is critical for maintaining genomic stability through its functions in DNA repair, recombination, and replication. Unlike many DNA repair proteins, RECQL4 has unique functions in many of the central DNA repair pathways such as replication, telomere, double-strand break repair, base excision repair, mitochondrial maintenance, nucleotide excision repair, and crosslink repair. Consistent with these diverse roles, mutations in RECQL4 are associated with three distinct genetic diseases, which are characterized by developmental defects and/or cancer predisposition. In this review, we provide an overview of the roles and regulation of RECQL4 during maintenance of genome homeostasis.
Collapse
Affiliation(s)
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|
17
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
18
|
Organization of DNA Replication Origin Firing in Xenopus Egg Extracts: The Role of Intra-S Checkpoint. Genes (Basel) 2021; 12:genes12081224. [PMID: 34440398 PMCID: PMC8394201 DOI: 10.3390/genes12081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.
Collapse
|
19
|
Tao Y, Aparicio T, Li M, Leong KW, Zha S, Gautier J. Inhibition of DNA replication initiation by silver nanoclusters. Nucleic Acids Res 2021; 49:5074-5083. [PMID: 33905520 PMCID: PMC8136792 DOI: 10.1093/nar/gkab271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023] Open
Abstract
Silver nanoclusters (AgNCs) have outstanding physicochemical characteristics, including the ability to interact with proteins and DNA. Given the growing number of diagnostic and therapeutic applications of AgNCs, we evaluated the impact of AgNCs on DNA replication and DNA damage response in cell-free extracts prepared from unfertilized Xenopus laevis eggs. We find that, among a number of silver nanomaterials, AgNCs uniquely inhibited genomic DNA replication and abrogated the DNA replication checkpoint in cell-free extracts. AgNCs did not affect nuclear membrane or nucleosome assembly. AgNCs-supplemented extracts showed a strong defect in the loading of the mini chromosome maintenance (MCM) protein complex, the helicase that unwinds DNA ahead of replication forks. FLAG-AgNCs immunoprecipitation and mass spectrometry analysis of AgNCs associated proteins demonstrated direct interaction between MCM and AgNCs. Our studies indicate that AgNCs directly prevent the loading of MCM, blocking pre-replication complex (pre-RC) assembly and subsequent DNA replication initiation. Collectively, our findings broaden the scope of silver nanomaterials experimental applications, establishing AgNCs as a novel tool to study chromosomal DNA replication.
Collapse
Affiliation(s)
- Yu Tao
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Tomas Aparicio
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Departments of Pediatrics, Pathology and Cell Biology, Immunology and Microbiology, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
20
|
Studying chromosome biology with single-molecule resolution in Xenopus laevis egg extracts. Essays Biochem 2021; 65:17-26. [PMID: 33438722 PMCID: PMC8056035 DOI: 10.1042/ebc20200026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023]
Abstract
Cell-free extracts from Xenopus laevis eggs are a model system for studying chromosome biology. Xenopus egg extracts can be synchronised in different cell cycle stages, making them useful for studying DNA replication, DNA repair and chromosome organisation. Combining single-molecule approaches with egg extracts is an exciting development being used to reveal molecular mechanisms that are difficult to study using conventional approaches. Fluorescence-based single-molecule imaging of surface-tethered DNAs has been used to visualise labelled protein movements on stretched DNA, the dynamics of DNA–protein complexes and extract-dependent structural rearrangement of stained DNA. Force-based single-molecule techniques are an alternative approach to measure mechanics of DNA and proteins. In this essay, the details of these single-molecule techniques, and the insights into chromosome biology they provide, will be discussed.
Collapse
|
21
|
Tsuyama T, Fujita K, Sasaki R, Hamanaka S, Sotoyama Y, Ogawa A, Kusuzaki K, Azuma Y, Tada S. N-terminal region of RecQ4 inhibits non-homologous end joining and chromatin association of the Ku heterodimer in Xenopus egg extracts. Gene 2021; 787:145647. [PMID: 33845136 DOI: 10.1016/j.gene.2021.145647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
RecQ4, a member of the RecQ helicase family, is required for the maintenance of genome integrity. RecQ4 has been shown to promote the following two DNA double-strand break (DSB) repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). However, its molecular function has not been fully elucidated. In the present study, we aimed to investigate the role of RecQ4 in NHEJ using Xenopus egg extracts. The N-terminal 598 amino acid region of Xenopus RecQ4 (N598), which lacks a central helicase domain and a downstream C-terminal region, was added to the extracts and its effect on the joining of DNA ends was analyzed. We found that N598 inhibited the joining of linearized DNA ends in the extracts. In addition, N598 inhibited DSB-induced chromatin binding of Ku70, which is essential for NHEJ, while the DSB-induced chromatin binding of the HR-associated proteins, replication protein A (RPA) and Rad51, increased upon the addition of N598. These results suggest that RecQ4 possibly influences the choice of the DSB repair pathway by influencing the association of the Ku heterodimer with the DNA ends.
Collapse
Affiliation(s)
- Takashi Tsuyama
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Kumiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Ryosuke Sasaki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Shiori Hamanaka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Yuki Sotoyama
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Akira Ogawa
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Kana Kusuzaki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Yutaro Azuma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Shusuke Tada
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan.
| |
Collapse
|
22
|
Structure-function analysis of TOPBP1's role in ATR signaling using the DSB-mediated ATR activation in Xenopus egg extracts (DMAX) system. Sci Rep 2021; 11:467. [PMID: 33432091 PMCID: PMC7801695 DOI: 10.1038/s41598-020-80626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
The protein kinase ATR is activated at sites of DNA double-strand breaks where it plays important roles in promoting DNA end resection and regulating cell cycle progression. TOPBP1 is a multi BRCT repeat containing protein that activates ATR at DSBs. Here we have developed an experimental tool, the DMAX system, to study the biochemical mechanism for TOPBP1-mediated ATR signalling. DMAX combines simple, linear dsDNA molecules with Xenopus egg extracts and results in a physiologically relevant, DSB-induced activation of ATR. We find that DNAs of 5000 nucleotides, at femtomolar concentration, potently activate ATR in this system. By combining immunodepletion and add-back of TOPBP1 point mutants we use DMAX to determine which of TOPBP1’s nine BRCT domains are required for recruitment of TOPBP1 to DSBs and which domains are needed for ATR-mediated phosphorylation of CHK1. We find that BRCT1 and BRCT7 are important for recruitment and that BRCT5 functions downstream of recruitment to promote ATR-mediated phosphorylation of CHK1. We also show that BRCT7 plays a second role, independent of recruitment, in promoting ATR signalling. These findings supply a new research tool for, and new insights into, ATR biology.
Collapse
|
23
|
Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nat Commun 2021; 12:162. [PMID: 33420085 PMCID: PMC7794231 DOI: 10.1038/s41467-020-20414-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability in live cells. Reduction of FancJ and RTEL1 expression in mammalian cells increases the DAOTA-M2 lifetime and therefore suggests an increased number of G4s in these cells, implying that FancJ and RTEL1 play a role in resolving G4 structures in cellulo. Direct observation of G-quadruplexes (G4s) in live cells is challenging. Here the authors report a method to identify G4s within the nuclei of live and fixed cells using a fluorescent probe combined with fluorescence lifetime imaging microscopy.
Collapse
|
24
|
Abstract
The DNA damage response (DDR) is a coordinated cellular response to a variety of insults to the genome. DDR initiates the activation of cell cycle checkpoints preventing the propagation of damaged DNA followed by DNA repair, which are both critical in maintaining genome integrity. Several model systems have been developed to study the mechanisms and complexity of checkpoint function. Here we describe the application of cell-free extracts derived from Xenopus eggs as a model system to investigate signaling from DNA damage, modulation of DNA replication, checkpoint activation, and ultimately DNA repair. We outline the preparation of cell-free extracts, DNA substrates, and their subsequent use in assays aimed at understanding the cellular response to DNA damage. Cell-free extracts derived from the eggs of Xenopus laevis remain a robust and versatile system to decipher the biochemical steps underlying this essential characteristic of all cells, critical for genome stability.
Collapse
|
25
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
26
|
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020; 7:E115. [PMID: 32957528 PMCID: PMC7552665 DOI: 10.3390/bioengineering7030115] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.
Collapse
Affiliation(s)
- Patrick Bédard
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Sara Gauvin
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Karel Ferland
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
27
|
Wang AS, Chen LC, Wu RA, Hao Y, McSwiggen DT, Heckert AB, Richardson CD, Gowen BG, Kazane KR, Vu JT, Wyman SK, Shin JJ, Darzacq X, Walter JC, Corn JE. The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells. Mol Cell 2020; 79:221-233.e5. [PMID: 32603710 PMCID: PMC7398558 DOI: 10.1016/j.molcel.2020.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/26/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
Collapse
Affiliation(s)
- Alan S Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leo C Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yvonne Hao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David T McSwiggen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alec B Heckert
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher D Richardson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katelynn R Kazane
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stacia K Wyman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiyung J Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Corn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
28
|
Kyrilis FL, Meister A, Kastritis PL. Integrative biology of native cell extracts: a new era for structural characterization of life processes. Biol Chem 2020; 400:831-846. [PMID: 31091193 DOI: 10.1515/hsz-2018-0445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Advances in electron microscopy have provided unprecedented access to the structural characterization of large, flexible and heterogeneous complexes. Until recently, cryo-electron microscopy (cryo-EM) has been applied to understand molecular organization in either highly purified, isolated biomolecules or in situ. An emerging field is developing, bridging the gap between the two approaches, and focuses on studying molecular organization in native cell extracts. This field has demonstrated its potential by resolving the structure of fungal fatty acid synthase (FAS) at 4.7 Å [Fourier shell correlation (FSC) = 0.143]; FAS was not only less than 50% enriched, but also retained higher-order binders, previously unknown. Although controversial in the sense that the lysis step might introduce artifacts, cell extracts preserve aspects of cellular function. In addition, cell extracts are accessible, besides cryo-EM, to modern proteomic methods, chemical cross-linking, network biology and biophysical modeling. We expect that automation in imaging cell extracts, along with the integration of molecular/cell biology approaches, will provide remarkable achievements in the study of closer-to-life biomolecular states of pronounced biotechnological and medical importance. Such steps will, eventually, bring us a step closer to the biophysical description of cellular processes in an integrative, holistic approach.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany.,Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle/Saale, Germany
| |
Collapse
|
29
|
Hoogenboom WS, Boonen RACM, Knipscheer P. The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair. Nucleic Acids Res 2019; 47:2377-2388. [PMID: 30576517 PMCID: PMC6411836 DOI: 10.1093/nar/gky1276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
A key step in the Fanconi anemia pathway of DNA interstrand crosslink (ICL) repair is the ICL unhooking by dual endonucleolytic incisions. SLX4/FANCP is a large scaffold protein that plays a central role in ICL unhooking. It contains multiple domains that interact with many proteins including three different endonucleases and also acts in several other DNA repair pathways. While it is known that its interaction with the endonuclease XPF-ERCC1 is required for its function in ICL repair, which other domains act in this process is unclear. Here, we used Xenopus egg extracts to determine ICL repair specific features of SLX4. We show that the SLX4-interacting endonuclease SLX1 is not required for ICL repair and demonstrate that all essential SLX4 domains are located at the N-terminal half of the protein. The MLR domain is crucial for the recruitment of XPF-ERCC1 but also has an unanticipated function in recruiting SLX4 to the site of damage. Although we find the BTB is not essential for ICL repair in our system, dimerization of SLX4 could be important. Our data provide new insights into the mechanism by which SLX4 acts in ICL repair.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick A C M Boonen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Horb M, Wlizla M, Abu-Daya A, McNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, Robert J, James-Zorn C, Guille M. Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support. Front Physiol 2019; 10:387. [PMID: 31073289 PMCID: PMC6497014 DOI: 10.3389/fphys.2019.00387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Two species of the clawed frog family, Xenopus laevis and X. tropicalis, are widely used as tools to investigate both normal and disease-state biochemistry, genetics, cell biology, and developmental biology. To support both frog specialist and non-specialist scientists needing access to these models for their research, a number of centralized resources exist around the world. These include centers that hold live and frozen stocks of transgenic, inbred and mutant animals and centers that hold molecular resources. This infrastructure is supported by a model organism database. Here, we describe much of this infrastructure and encourage the community to make the best use of it and to guide the resource centers in developing new lines and libraries.
Collapse
Affiliation(s)
- Marko Horb
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Marcin Wlizla
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Anita Abu-Daya
- European Xenopus Resource Centre, Portsmouth, United Kingdom
| | - Sean McNamara
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Dominika Gajdasik
- School of Biological Sciences, King Henry Building, Portsmouth, United Kingdom
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Atsushi Suzuki
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Anna Noble
- European Xenopus Resource Centre, Portsmouth, United Kingdom
| | | | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Matthew Guille
- European Xenopus Resource Centre, Portsmouth, United Kingdom.,School of Biological Sciences, King Henry Building, Portsmouth, United Kingdom
| |
Collapse
|
31
|
Abstract
Besides TopBP1, ETAA1 has been identified more recently as an activator of the ATR-ATRIP complex in human cells. We have examined the role of ETAA1 in the Xenopus egg-extract system, which has been instrumental in the study of ATR-ATRIP. Depletion of ETAA1 from egg extracts did not noticeably reduce the activation of ATR-ATRIP in response to replication stress, as monitored by the ATR-dependent phosphorylation of Chk1 and RPA. Moreover, lack of ETAA1 did not appear to affect DNA replication during an unperturbed S-phase. Significantly, we find that TopBP1 is considerably more abundant than ETAA1 in egg extracts. We proceeded to show that ETAA1 could support the activation of ATR-ATRIP in response to replication stress if we increased its concentration in egg extracts by adding extra full-length recombinant ETAA1. Thus, TopBP1 appears to be the predominant activator of ATR-ATRIP in response to replication stress in this system. We have also explored the biochemical mechanism by which ETAA1 activates ATR-ATRIP. We have developed an in vitro system in which full-length recombinant ETAA1 supports activation of ATR-ATRIP in the presence of defined components. We find that binding of ETAA1 to RPA associated with single-stranded DNA (ssDNA) greatly stimulates its ability to activate ATR-ATRIP. Thus, RPA-coated ssDNA serves as a direct positive effector in the ETAA1-mediated activation of ATR-ATRIP.
Collapse
Affiliation(s)
- Ke Lyu
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - Akiko Kumagai
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - William G Dunphy
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| |
Collapse
|
32
|
Sparks J, Walter JC. Extracts for Analysis of DNA Replication in a Nucleus-Free System. Cold Spring Harb Protoc 2019; 2019:pdb.prot097154. [PMID: 29769389 DOI: 10.1101/pdb.prot097154] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Frog egg extracts represent a powerful approach with which to dissect molecular mechanisms of vertebrate DNA replication and repair. In the classical approach, sperm chromatin is added to a crude egg lysate to form replication-competent nuclei. We subsequently described a procedure that bypasses the requirement for nuclear assembly in DNA replication. In this method, DNA is first added to a high-speed supernatant (HSS) of egg lysate, which mimics the G1 phase of the cell cycle in that it supports replication licensing. Subsequent addition of a concentrated nucleoplasmic extract (NPE) leads to replication initiation followed by a single complete round of DNA replication. The advantage of the nucleus-free system is that it supports efficient replication of model DNA templates such as plasmids and lambda DNA that can be modified with specific features such as LacI arrays, DNA protein cross-links, or DNA interstrand cross-links. Here, we describe our current protocol for preparation of HSS and NPE. Methods for their use in DNA replication and repair are described elsewhere.
Collapse
Affiliation(s)
- Justin Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; .,Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
33
|
Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM. Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Front Physiol 2019; 10:154. [PMID: 30863320 PMCID: PMC6399412 DOI: 10.3389/fphys.2019.00154] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.
Collapse
Affiliation(s)
- Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Malcolm E Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Virgilio Ponferrada
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joshua D Fortriede
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kevin A Burns
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Ying Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vaneet S Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dong Zhou Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Erik Segerdell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
34
|
Hardwick LJA, Philpott A. Xenopus Models of Cancer: Expanding the Oncologist's Toolbox. Front Physiol 2018; 9:1660. [PMID: 30538639 PMCID: PMC6277521 DOI: 10.3389/fphys.2018.01660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023] Open
Abstract
The use of the Xenopus model system has provided diverse contributions to cancer research, not least because of the striking parallels between tumour pathogenesis and early embryo development. Cell cycle regulation, signalling pathways, and cell behaviours such as migration are frequently perturbed in cancers; all have been investigated using Xenopus, and these developmental events can additionally act as an assay for drug development studies. In this mini-review, we focus our discussion primarily on whole embryo Xenopus models informing cancer biology; the contributions to date and future potential. Insights into tumour immunity, oncogene function, and visualisation of vascular responses during tumour formation have all been achieved with naturally occurring tumours and induced-tumour-like-structures in Xenopus. Finally, as we are now entering the era of genetically modified Xenopus models, we can harness genome editing techniques to recapitulate human disease through creating embryos with analogous genetic abnormalities. With the speed, versatility and accessibility that epitomise the Xenopus system, this new range of pre-clinical Xenopus models has great potential to advance our mechanistic understanding of oncogenesis and provide an early in vivo model for chemotherapeutic development.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Peterhouse, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection. Cell Rep 2018; 21:333-340. [PMID: 29020621 DOI: 10.1016/j.celrep.2017.09.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions. Here, we report that these mutations fail to protect nascent DNA from MRE11-mediated degradation during RF stalling in Xenopus laevis egg extracts. Reconstitution of DNA protection in vitro revealed that the defect arises directly due to altered RAD51 properties. Both mutations induce pronounced structural changes and RAD51 filament destabilization that is not rescued by prevention of ATP hydrolysis due to aberrant ATP binding. Our results further interconnect the FA pathway with DNA replication and provide mechanistic insight into the role of RAD51 in recombination-independent mechanisms of genome maintenance.
Collapse
|
36
|
Third EU-US workshop on “Nucleotide excision repair and crosslink repair—From molecules to mankind”, Smolenice Castle, Slovak Republic, May 7th–11th 2017. DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|