1
|
Du W, Verma A, Ye Q, Du W, Lin S, Yamanaka A, Klein OD, Hu JK. Myosin II mediates Shh signals to shape dental epithelia via control of cell adhesion and movement. PLoS Genet 2024; 20:e1011326. [PMID: 38857279 PMCID: PMC11192418 DOI: 10.1371/journal.pgen.1011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Adya Verma
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wen Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sandy Lin
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Holtz AM, VanCoillie R, Vansickle EA, Carere DA, Withrow K, Torti E, Juusola J, Millan F, Person R, Guillen Sacoto MJ, Si Y, Wentzensen IM, Pugh J, Vasileiou G, Rieger M, Reis A, Argilli E, Sherr EH, Aldinger KA, Dobyns WB, Brunet T, Hoefele J, Wagner M, Haber B, Kotzaeridou U, Keren B, Heron D, Mignot C, Heide S, Courtin T, Buratti J, Murugasen S, Donald KA, O'Heir E, Moody S, Kim KH, Burton BK, Yoon G, Campo MD, Masser-Frye D, Kozenko M, Parkinson C, Sell SL, Gordon PL, Prokop JW, Karaa A, Bupp C, Raby BA. Heterozygous variants in MYH10 associated with neurodevelopmental disorders and congenital anomalies with evidence for primary cilia-dependent defects in Hedgehog signaling. Genet Med 2022; 24:2065-2078. [PMID: 35980381 PMCID: PMC10765599 DOI: 10.1016/j.gim.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.
Collapse
Affiliation(s)
- Alexander M Holtz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA.
| | - Rachel VanCoillie
- Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI
| | - Elizabeth A Vansickle
- Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI
| | | | | | | | | | | | | | | | | | | | - Jada Pugh
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melissa Rieger
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emanuela Argilli
- Brain Development Research Program, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Elliott H Sherr
- Brain Development Research Program, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - William B Dobyns
- Division of Pediatric Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Theresa Brunet
- Institute of Human Genetics, Technical University Munich School of Medicine, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Technical University Munich School of Medicine, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich School of Medicine, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Division of Pediatric Neurology, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | - Benjamin Haber
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Solveig Heide
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Thomas Courtin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Serini Murugasen
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, South Africa
| | - Emily O'Heir
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Shade Moody
- Division of Child and Adolescent Neurology, The University of Texas Health Science Center, Houston, TX
| | - Katherine H Kim
- Division of Genetics, Birth Defects, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Barbara K Burton
- Division of Genetics, Birth Defects, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Miguel Del Campo
- Division of Dysmorphology & Teratology, Department of Pediatrics, University of California San Diego, San Diego, CA
| | - Diane Masser-Frye
- Division of Genetics/ Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Christina Parkinson
- Division of Genetics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Susan L Sell
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA
| | - Patricia L Gordon
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Amel Karaa
- Division of Genetics and Genomics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Caleb Bupp
- Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI.
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
4
|
Ivanov AI, Lechuga S, Marino‐Melendez A, Naydenov NG. Unique and redundant functions of cytoplasmic actins and nonmuscle myosin II isoforms at epithelial junctions. Ann N Y Acad Sci 2022; 1515:61-74. [PMID: 35673768 PMCID: PMC9489603 DOI: 10.1111/nyas.14808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The integrity and functions of epithelial barriers depend on the formation of adherens junctions (AJs) and tight junctions (TJs). A characteristic feature of AJs and TJs is their association with the cortical cytoskeleton composed of actin filaments and nonmuscle myosin II (NM-II) motors. Mechanical forces generated by the actomyosin cytoskeleton are essential for junctional assembly, stability, and remodeling. Epithelial cells express two different actin proteins and three NM-II isoforms, all known to be associated with AJs and TJs. Despite their structural similarity, different actin and NM-II isoforms have distinct biochemical properties, cellular distribution, and functions. The diversity of epithelial actins and myosin motors could be essential for the regulation of different steps of junctional formation, maturation, and disassembly. This review focuses on the roles of actin and NM-II isoforms in controlling the integrity and barrier properties of various epithelia. We discuss the effects of the depletion of individual actin isoforms and NM-II motors on the assembly and barrier function of AJs and TJs in model epithelial monolayers in vitro. We also describe the functional consequences of either total or tissue-specific gene knockout of different actins and NM-II motors, with a focus on the development and integrity of different epithelia in vivo.
Collapse
Affiliation(s)
- Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Armando Marino‐Melendez
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
5
|
Gao R, Niu X, Zhu L, Qi R, He L. iTRAQ quantitative proteomic analysis differentially expressed proteins and signal pathways in henoch-schönlein purpura nephritis. Am J Transl Res 2020; 12:7908-7922. [PMID: 33437369 PMCID: PMC7791518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Henoch-Schönlein purpura nephritis (HSPN) has been considered as a major cause of chronic renal failure in children and a condition which can worsen clinical outcomes in adults. At present, the molecular mechanisms of HSPN are still unclear. In this study, iTRAQ quantitative proteomic analysis was performed on renal tissues collected from patients with HSPN and compared with those of patients after nephrectomy (controls). A total of 149 differentially expressed proteins (DEPs) were detected, of which, 97 being upregulated and 52 down-regulated. Protein functions and classifications were analyzed using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, protein domains. expressive hierarchical clustering analysis and protein-protein interaction (PPI) analysis were also conducted for DEPs. The results of bioinformatics analysis indicated that DEPs were enriched in lipid metabolism and the adherens junction pathway. Among these proteins, CDC42 and CTNNB1 were identified as potential candidates involved in the pathogenesis of HSPN. Immunohistochemistry and real-time PCR further demonstrated that CDC42 and CTNNB1 were up-regulated in HSPN patients. These results provide new and important insights into some underlying molecular pathogenesis of HSPN.
Collapse
Affiliation(s)
- Ran Gao
- Department of Hematology, No. 1 Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Xueli Niu
- Department of Dermatology, No. 1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of EducationShenyang 110001, Liaoning, China
| | - Lili Zhu
- Department of Dermatology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Ruiqun Qi
- Department of Dermatology, No. 1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of EducationShenyang 110001, Liaoning, China
| | - Liang He
- Department of Thyroid Surgery, No. 1 Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| |
Collapse
|
6
|
Sung DC, Ahmad M, Lerma Cervantes CB, Zhang Y, Adelstein RS, Ma X. Mutations in non-muscle myosin 2A disrupt the actomyosin cytoskeleton in Sertoli cells and cause male infertility. Dev Biol 2020; 470:49-61. [PMID: 33188738 DOI: 10.1016/j.ydbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Mutations in non-muscle myosin 2A (NM2A) encompass a wide spectrum of anomalies collectively known as MYH9-Related Disease (MYH9-RD) in humans that can include macrothrombocytopenia, glomerulosclerosis, deafness, and cataracts. We previously created mouse models of the three mutations most frequently found in humans: R702C, D1424N, and E1841K. While homozygous R702C and D1424N mutations are embryonic lethal, we found homozygous mutant E1841K mice to be viable. However the homozygous male, but not female, mice were infertile. Here, we report that these mice have reduced testis size and defects in actin-associated junctions in Sertoli cells, resulting in inability to form the blood-testis barrier and premature germ cell loss. Moreover, compound double heterozygous (R702C/E1841K and D1424/E1841K) males show the same abnormalities in testes as E1841K homozygous males. Conditional ablation of either NM2A or NM2B alone in Sertoli cells has no effect on fertility and testis size, however deletion of both NM2A and NM2B in Sertoli cells results in infertility. Isolation of mutant E1841K Sertoli cells reveals decreased NM2A and F-actin colocalization and thicker NM2A filaments. Furthermore, AE1841K/AE1841K and double knockout Sertoli cells demonstrate microtubule disorganization and increased tubulin acetylation, suggesting defects in the microtubule cytoskeleton. Together, these results demonstrate that NM2A and 2B paralogs play redundant roles in Sertoli cells and are essential for testes development and normal fertility.
Collapse
Affiliation(s)
- Derek C Sung
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Mohsin Ahmad
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Connie B Lerma Cervantes
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Yingfan Zhang
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States.
| |
Collapse
|
7
|
Li Y, Chen Z, Zhang J, Zhang Q, He L, Xu M, Xu G, Geng H, Fang X. Quantitative Proteome of Infant Stenotic Ureters Reveals Extracellular Matrix Organization and Oxidative Stress Dysregulation Underlying Ureteropelvic Junction Obstruction. Proteomics Clin Appl 2020; 14:e2000030. [PMID: 32969194 DOI: 10.1002/prca.202000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/21/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE Ureteropelvic junction obstruction (UPJO) is the most frequent cause of congenital hydronephrosis in child. To better investigate the molecular mechanisms of this pathological process, the stenotic ureter proteome of UPJO in infants is compared with their own normal pre-stenotic segments. EXPERIMENTAL DESIGN Data independent acquisition-based proteomics are performed to compare proteome between pre-stenotic and stenotic ureter from nine UPJO infants. Gene ontology analysis, hierarchical cluster analysis, and network interaction are performed to characterize biological functions of significantly altered proteins. Selected significantly altered proteins are validated by western blot on another three UPJO infants. RESULTS 15 proteins are up-regulated and 33 proteins are down-regulated during stenotic pathology. Significantly altered proteins are involved in decreased extracellular matrix and cytoskeleton organization, increased regulation of oxidative activity, and altered inflammatory associated exocytosis. Significant expression of biglycan, fibulin-1, myosin-10, cytochrome b5 are validated providing possible mechanism in UPJO which could be associated impaired smooth muscle cell, epithelial integrity, and increased oxidative stress. CONCLUSIONS AND CLINICAL RELEVANCE: This study provides molecular evidence of dysregulated extracellular matrix organization, impaired smooth muscle cell, and oxidative stress during UPJO pathology, indicating that biglycan, fibulin-1, myosin-10, cytochrome b5 might reflect the pathology of UPJO.
Collapse
Affiliation(s)
- Yueyan Li
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhoutong Chen
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Junqi Zhang
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qimin Zhang
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lei He
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Maosheng Xu
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Guofeng Xu
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hongquan Geng
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaoliang Fang
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| |
Collapse
|
8
|
Li X, Liu H, Yu W, Liu X, Liu C. Tandem mass tag (TMT) proteomic analysis of fetal lungs revealed differential expression of tight junction proteins in a rat model of congenital diaphragmatic hernia. Biomed Pharmacother 2019; 121:109621. [PMID: 31734580 DOI: 10.1016/j.biopha.2019.109621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Congenital diaphragmatic hernia (CDH) is a common and often lethal birth defect characterized by congenital lung malformation, which severely affects neonate prognosis and mortality. This study aimed to investigate differences in protein expression in order to elucidate the mechanism of CDH-associated pulmonary hypoplasia during the early stage of lung development using tandem mass tag (TMT) quantitative proteomics. METHODS Nitrofen was administered orally to establish a rat CDH model, and pathological changes were evaluated through hematoxylin-eosin (H&E), PCNA, and Ki67 staining at the pseudoglandular stage. Fetal lungs were then collected, pooled before TMT labeling, and subjected to mass spectrometry. Immunohistochemistry (IHC), Western blotting, and Q-PCR were used to further validate the candidate proteins. RESULTS A total of 79 differentially expressed proteins (DEPs) were identified when CDH and control lungs were compared, and further bioinformatics analysis showed that these proteins play important roles in tight-junctions, phospholipase D signaling, and the HIF-1 signaling pathway. Three differentially expressed proteins, Cldn3, Magi1, and Myh9 are involved in the tight-junction pathway (P < 0.05), and their differential expressions were confirmed by IHC, Western blotting, and Q-PCR. CONCLUSION These findings indicate that alterations of tight-junction protein expression may play an important role in the pathogenesis of abnormal lung development in CDH. Further studies are warranted to verify the mechanism by which these tight-junction proteins influence the pathogenesis of CDH-associated pulmonary hypoplasia.
Collapse
Affiliation(s)
- Xue Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.
| | - Hao Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.
| | - Wenqian Yu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.
| | - Xiaomei Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.
| | - Caixia Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, China.
| |
Collapse
|
9
|
Trendowski MR, El-Charif O, Ratain MJ, Monahan P, Mu Z, Wheeler HE, Dinh PC, Feldman DR, Ardeshir-Rouhani-Fard S, Hamilton RJ, Vaughn DJ, Fung C, Kollmannsberger C, Mushiroda T, Kubo M, Hannigan R, Strathmann F, Einhorn LH, Fossa SD, Travis LB, Dolan ME. Clinical and Genome-Wide Analysis of Serum Platinum Levels after Cisplatin-Based Chemotherapy. Clin Cancer Res 2019; 25:5913-5924. [PMID: 31296530 PMCID: PMC6774840 DOI: 10.1158/1078-0432.ccr-19-0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Serum platinum is measurable for years after completion of cisplatin-based chemotherapy (CBC). We report the largest investigation of serum platinum levels to date of 1,010 testicular cancer survivors (TCS) assessed 1-35 years after CBC and evaluate genetic contributions to these levels. EXPERIMENTAL DESIGN Eligible TCS given 300 or 400 (±15) mg/m2 cisplatin underwent extensive audiometric testing, clinical examination, completed questionnaires, and had crude serum platinum levels measured. Associations between serum platinum and various risk factors and toxicities were assessed after fitting a biexponential model adjusted for follow-up time and cumulative cisplatin dose. A genome-wide association study (GWAS) was performed using the serum platinum residuals of the dose and time-adjusted model. RESULTS Serum platinum levels exceeded the reference range for approximately 31 years, with a strong inverse relationship with creatinine clearance at follow-up (age-adjusted P = 2.13 × 10-3). We observed a significant, positive association between residual platinum values and luteinizing hormone (age-adjusted P = 6.58 × 10-3). Patients with high residual platinum levels experienced greater Raynaud phenomenon than those with medium or low levels (age-adjusted ORhigh/low = 1.46; P = 0.04), as well as a higher likelihood of developing tinnitus (age-adjusted ORhigh/low = 1.68, P = 0.07). GWAS identified one single-nucleotide polymorphism (SNP) meeting genome-wide significance, rs1377817 (P = 4.6 × 10-8, a SNP intronic to MYH14). CONCLUSIONS This study indicates that residual platinum values are correlated with several cisplatin-related toxicities. One genetic variant is associated with these levels.
Collapse
Affiliation(s)
| | - Omar El-Charif
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mark J Ratain
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Patrick Monahan
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Zepeng Mu
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Paul C Dinh
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Robyn Hannigan
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts
| | | | - Lawrence H Einhorn
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Sophie D Fossa
- Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana.
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Heuzé ML, Sankara Narayana GHN, D'Alessandro J, Cellerin V, Dang T, Williams DS, Van Hest JC, Marcq P, Mège RM, Ladoux B. Myosin II isoforms play distinct roles in adherens junction biogenesis. eLife 2019; 8:46599. [PMID: 31486768 PMCID: PMC6756789 DOI: 10.7554/elife.46599] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022] Open
Abstract
Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.
Collapse
Affiliation(s)
- Mélina L Heuzé
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | | | - Joseph D'Alessandro
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Victor Cellerin
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Tien Dang
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - David S Williams
- Department of Chemistry, College of Science, Swansea University, Swansea, United Kingdom
| | - Jan Cm Van Hest
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université and CNRS UMR 7636, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| |
Collapse
|
11
|
Wrighton KH. Non-muscle myosin II in kidney morphogenesis. Nat Rev Nephrol 2017; 13:384. [DOI: 10.1038/nrneph.2017.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|