1
|
Ostalé CM, Azpiazu N, Peropadre A, Martín M, Ruiz-Losada M, López-Varea A, Viales RR, Girardot C, Furlong EEM, de Celis JF. A function of Spalt proteins in heterochromatin organization and maintenance of genomic DNA integrity. Development 2025; 152:dev204258. [PMID: 40326666 PMCID: PMC12091872 DOI: 10.1242/dev.204258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
The conserved Spalt proteins regulate gene expression and cell fate choices during multicellular development, generally acting as transcriptional repressors in different gene regulatory networks. In addition to their roles as DNA sequence-specific transcription factors, Spalt proteins show a consistent localization to heterochromatic regions. Vertebrate Spalt-like proteins can act through the nucleosome remodeling and deacetylase complex to promote closing of open chromatin domains, but their activities also rely on interactions with DNA methyltransferases or with the lysine-specific histone demethylase LSD1, suggesting that they participate in multiple regulatory mechanisms. Here, we describe several consequences of loss of Spalt function in Drosophila cells, including changes in chromatin accessibility, generation of DNA damage, alterations in the localization of chromosomes within the nucleus in the salivary glands and misexpression of transposable elements. We suggest that these effects are related to roles of Spalt proteins in the regulation of heterochromatin formation and chromatin organization. We propose that Drosophila Spalt proteins have two complementary functions, acting as sequence-specific transcriptional repressors on specific target genes and regulating more global gene silencing through the generation or maintenance of heterochromatic domains.
Collapse
Affiliation(s)
- Cristina M. Ostalé
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Natalia Azpiazu
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana Peropadre
- Department of Biology, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mercedes Martín
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mireya Ruiz-Losada
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Rebecca R. Viales
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Eileen E. M. Furlong
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Jose F. de Celis
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Baccas M, Ganesan V, Leung A, Pineiro LR, McKillop AN, Liu J. SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development. PLoS Genet 2025; 21:e1011361. [PMID: 39836649 PMCID: PMC11785321 DOI: 10.1371/journal.pgen.1011361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/31/2025] [Accepted: 11/05/2024] [Indexed: 01/23/2025] Open
Abstract
Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.
Collapse
Affiliation(s)
- Marissa Baccas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vanathi Ganesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amy Leung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Lucas R. Pineiro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Alexandra N. McKillop
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Baccas M, Ganesan V, Leung A, Pineiro L, McKillop AN, Liu J. SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602042. [PMID: 39005444 PMCID: PMC11245110 DOI: 10.1101/2024.07.04.602042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.
Collapse
Affiliation(s)
- Marissa Baccas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Vanathi Ganesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Amy Leung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Lucas Pineiro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Luo KL, Underwood RS, Greenwald I. Positive autoregulation of lag-1 in response to LIN-12 activation in cell fate decisions during C. elegans reproductive system development. Development 2020; 147:dev.193482. [PMID: 32839181 DOI: 10.1242/dev.193482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
During animal development, ligand binding releases the intracellular domain of LIN-12/Notch by proteolytic cleavage to translocate to the nucleus, where it associates with the DNA-binding protein LAG-1/CSL to activate target gene transcription. We investigated the spatiotemporal regulation of LAG-1/CSL expression in Caenorhabditis elegans and observed that an increase in endogenous LAG-1 levels correlates with LIN-12/Notch activation in different cell contexts during reproductive system development. We show that this increase is via transcriptional upregulation by creating a synthetic endogenous operon, and identified an enhancer region that contains multiple LAG-1 binding sites (LBSs) embedded in a more extensively conserved high occupancy target (HOT) region. We show that these LBSs are necessary for upregulation in response to LIN-12/Notch activity, indicating that lag-1 engages in direct positive autoregulation. Deletion of the HOT region from endogenous lag-1 reduced LAG-1 levels and abrogated positive autoregulation, but did not cause hallmark cell fate transformations associated with loss of lin-12/Notch or lag-1 activity. Instead, later somatic reproductive system defects suggest that proper transcriptional regulation of lag-1 confers robustness to somatic reproductive system development.
Collapse
Affiliation(s)
- Katherine Leisan Luo
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ryan S Underwood
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|