1
|
Dominado N, Ye R, Casagranda F, Heaney J, Siddall NA, Abud HE, Hime GR. Alternate Grainy head isoforms regulate Drosophila midgut intestinal stem cell differentiation. Cell Death Discov 2025; 11:206. [PMID: 40295491 PMCID: PMC12037896 DOI: 10.1038/s41420-025-02496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Regeneration of the Drosophila midgut epithelium depends upon differential expression of transcription factors in intestinal stem cells and their progeny. The grainy head locus produces multiple splice forms that result in production of two classes of transcription factor, designated Grh.O and Grh.N. grainy head expression is associated with epithelial tissue and has roles in epidermal development and regeneration but had not been examined for a function in the midgut epithelium. Here we show that null mutant clones had a limited effect on intestinal stem cell (ISC) maintenance and proliferation but surprisingly specific loss of all Grh.O isoforms results in loss of ISCs from the epithelium. This was confirmed by generation of a new Grh.O class mutant to control for genetic background effects. Grh.O mutant ISCs were not lost due to cell death but were forced to differentiate. Ectopic expression of a Grh.N isoform also resulted in ISC differentiation similar to loss of Grh.O function. Grh.O expression must be tightly regulated as high level ectopic expression of a member of this isoform class in enteroblasts, but not ISCs, resulted in cells with confused identity and promoted excess proliferation in the epithelium. Thus, midgut regeneration is not only dependent upon signalling pathways that regulate transcription factor expression, but also upon regulated mRNA splicing of these genes.
Collapse
Affiliation(s)
- Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rachel Ye
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - James Heaney
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Deng Z, Butt T, Arhatari BD, Darido C, Auden A, Swaroop D, Partridge DD, Haigh K, Nguyen T, Haigh JJ, Carpinelli MR, Jane SM. Dysregulation of Grainyhead-like 3 expression causes widespread developmental defects. Dev Dyn 2023; 252:647-667. [PMID: 36606449 PMCID: PMC10952483 DOI: 10.1002/dvdy.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gene encoding the transcription factor, Grainyhead-like 3 (Grhl3), plays critical roles in mammalian development and homeostasis. Grhl3-null embryos exhibit thoraco-lumbo-sacral spina bifida and soft-tissue syndactyly. Additional studies reveal that these embryos also exhibit an epidermal proliferation/differentiation imbalance. This manifests as skin barrier defects resulting in peri-natal lethality and defective wound repair. Despite these extensive analyses of Grhl3 loss-of-function models, the consequences of gain-of-function of this gene have been difficult to achieve. RESULTS In this study, we generated a novel mouse model that expresses Grhl3 from a transgene integrated in the Rosa26 locus on an endogenous Grhl3-null background. Expression of the transgene rescues both the neurulation and skin barrier defects of the knockout mice, allowing survival into adulthood. Despite this, the mice are not normal, exhibiting a range of phenotypes attributable to dysregulated Grhl3 expression. In mice homozygous for the transgene, we observe a severe Shaker-Waltzer phenotype associated with hearing impairment. Micro-CT scanning of the inner ear revealed profound structural alterations underlying these phenotypes. In addition, these mice exhibit other developmental anomalies including hair loss, digit defects, and epidermal dysmorphogenesis. CONCLUSION Taken together, these findings indicate that diverse developmental processes display low tolerance to dysregulation of Grhl3.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Tariq Butt
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Benedicta D. Arhatari
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and PhysicsLa Trobe UniversityBundooraVictoriaAustralia
- Australian Synchrotron, ANSTOClaytonVictoriaAustralia
| | - Charbel Darido
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Alana Auden
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Dijina Swaroop
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Darren D. Partridge
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Katharina Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
- Research Institute in Oncology and HematologyCancerCare ManitobaWinnipegManitobaCanada
| | - Thao Nguyen
- Australian Centre for Blood Diseases, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
- Research Institute in Oncology and HematologyCancerCare ManitobaWinnipegManitobaCanada
| | - Marina R. Carpinelli
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Stephen M. Jane
- Department of Medicine (Alfred Hospital), Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
The functional GRHL3-filaggrin axis maintains a tumor differentiation potential and influences drug sensitivity. Mol Ther 2021; 29:2571-2582. [PMID: 33775911 PMCID: PMC8353142 DOI: 10.1016/j.ymthe.2021.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Current therapies for treating heterogeneous cancers such as head and neck squamous cell carcinoma (HNSCC) are non-selective and are administered independent of response biomarkers. Therapy resistance subsequently emerges, resulting in increased cellular proliferation that is associated with loss of differentiation. Whether a cancer cell differentiation potential can dictate therapy responsiveness is still currently unknown. A multi-omic approach integrating whole-genome and whole-transcriptome sequencing with drug sensitivity was employed in a HNSCC mouse model, primary patients’ data, and human cell lines to assess the potential of functional differentiation in predicting therapy response. Interestingly, a subset of HNSCC with effective GRHL3-dependent differentiation was the most sensitive to inhibitors of PI3K/mTOR, c-Myc, and STAT3 signaling. Furthermore, we identified the GRHL3-differentiation target gene Filaggrin (FLG) as a response biomarker and more importantly, stratified HNSCC subsets as treatment resistant based on their FLG mutational profile. The loss of FLG in sensitive HNSCC resulted in a dramatic resistance to targeted therapies while the GRHL3-FLG signature predicted a favorable patient prognosis. This study provides evidence for a functional GRHL3-FLG tumor-specific differentiation axis that regulates targeted therapy response in HNSCC and establishes a rationale for clinical investigation of differentiation-paired targeted therapy in heterogeneous cancers.
Collapse
|
4
|
Sundararajan V, Pang QY, Choolani M, Huang RYJ. Spotlight on the Granules (Grainyhead-Like Proteins) - From an Evolutionary Conserved Controller of Epithelial Trait to Pioneering the Chromatin Landscape. Front Mol Biosci 2020; 7:213. [PMID: 32974388 PMCID: PMC7471608 DOI: 10.3389/fmolb.2020.00213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Yuan M, Wang J, Fang F. Grainyhead-Like Genes Family May Act as Novel Biomarkers in Colon Cancer. Onco Targets Ther 2020; 13:3237-3245. [PMID: 32368082 PMCID: PMC7173839 DOI: 10.2147/ott.s242763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/22/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The Grainyhead-like (GRHL) genes family were reported to participate in the development of a number of diseases. This study was designed to investigate the role of GRHL genes family in colon cancer (CC). METHODS In this study, the transcriptional levels of GRHL genes family in patients with CC from GEPIA were explored. Meanwhile, the immunohistochemical data of the GRHL genes family were also obtained in the HPA database. Additionally, we re-identified the mRNA of these genes via real-time PCR. Furthermore, the association between the levels of GRHL genes and stage plot as well as survival condition including overall survival and disease-free survival of patients with CC was analyzed. Finally, by transfecting with specific-siRNA, clone formation assay was performed to observe the role of GRHL genes family in the proliferation of SW480 human colon cancer cells. RESULTS We found that the mRNA and protein levels of GRHL1, GRHL2 and GRHL3 were significantly higher in CC tissues than in normal colon tissues. Additionally, GRHL1, GRHL2 and GRHL3 were significantly associated with the stages of CC. The Kaplan-Meier plotter showed that the low levels of GRHL1, GRHL2 and GRHL3 conferred a better overall survival of patients with CC while the high levels of GRHL1 and GRHL3 were associated with poor disease-free survival. Knockdown of GRHL1, GRHL2 and GRH L3 siHgnificantly inhibited the ability of colony formation of human colon cancer cells. CONCLUSION Our study demonstrated that GRHL genes are involved in the prognosis and survival in patients with CC, the inhibition of which may suppress the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Minchi Yuan
- Department of Oncology, The First People’s Hospital of Jiashan, Jiashan, Zhejiang, People’s Republic of China
| | - Jianping Wang
- Department of Anorectal Surgery, Lishui Hospital of Zhejiang University, Zhejiang, People’s Republic of China
| | - Fazhuang Fang
- Department of Abdominal Tumor Surgery, Jinhua Guangfu Hospital, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Tan FH, Bai Y, Saintigny P, Darido C. mTOR Signalling in Head and Neck Cancer: Heads Up. Cells 2019; 8:cells8040333. [PMID: 30970654 PMCID: PMC6523933 DOI: 10.3390/cells8040333] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) signalling pathway is a central regulator of metabolism in all cells. It senses intracellular and extracellular signals and nutrient levels, and coordinates the metabolic requirements for cell growth, survival, and proliferation. Genetic alterations that deregulate mTOR signalling lead to metabolic reprogramming, resulting in the development of several cancers including those of the head and neck. Gain-of-function mutations in EGFR, PIK3CA, and HRAS, or loss-of-function in p53 and PTEN are often associated with mTOR hyperactivation, whereas mutations identified from The Cancer Genome Atlas (TCGA) dataset that potentially lead to aberrant mTOR signalling are found in the EIF4G1, PLD1, RAC1, and SZT2 genes. In this review, we discuss how these mutant genes could affect mTOR signalling and highlight their impact on metabolic processes, as well as suggest potential targets for therapeutic intervention, primarily in head and neck cancer.
Collapse
Affiliation(s)
- Fiona H Tan
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Yuchen Bai
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France.
| | - Charbel Darido
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
7
|
Traylor-Knowles N. Heat stress compromises epithelial integrity in the coral, Acropora hyacinthus. PeerJ 2019; 7:e6510. [PMID: 30828497 PMCID: PMC6396749 DOI: 10.7717/peerj.6510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/23/2019] [Indexed: 01/07/2023] Open
Abstract
It is well understood that heat stress causes bleaching in corals. Much work has focused on the way heat stress disrupts corals’ symbiotic relationship with endosymbiotic algal dinoflagellate, Symbiodiniaceae, a process called bleaching. However, the damage to the coral tissue that occurs during the bleaching process and, importantly, the factors that contribute to subsequent recovery, are not well understood. I hypothesize that the host tissue damage created by heat stress initiates cascades of wound healing factors that maintain epithelial integrity. These factors may be found to contribute to the coral’s potential capacity to recover. In this study, I present evidence that heat stress causes damage to the coral host tissue and that collagen is present in the gastrodermis of heat-stressed corals. I found that, during the early stages of bleaching, an important transcription factor for wound healing, Grainyhead, is expressed throughout the gastrodermis, where the cellular and tissue rearrangements occur. Lastly, using phylogenetics, I found that cnidarian Grainyhead proteins evolved three distinct groups and that evolution of this protein family likely happened within each taxonomic group. These findings have important implications for our study of coral resiliency in the face of climate change.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL, United States of America
| |
Collapse
|
8
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Alternative polyadenylation drives genome-to-phenome information detours in the AMPKα1 and AMPKα2 knockout mice. Sci Rep 2018; 8:6462. [PMID: 29691479 PMCID: PMC5915415 DOI: 10.1038/s41598-018-24683-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/06/2018] [Indexed: 01/25/2023] Open
Abstract
Currently available mouse knockout (KO) lines remain largely uncharacterized for genome-to-phenome (G2P) information flows. Here we test our hypothesis that altered myogenesis seen in AMPKα1- and AMPKα2-KO mice is caused by use of alternative polyadenylation sites (APSs). AMPKα1 and AMPKα2 are two α subunits of adenosine monophosphate-activated protein kinase (AMPK), which serves as a cellular sensor in regulation of many biological events. A total of 56,483 APSs were derived from gastrocnemius muscles. The differentially expressed APSs (DE-APSs) that were down-regulated tended to be distal. The DE-APSs that were related to reduced and increased muscle mass were down-regulated in AMPKα1-KO mice, but up-regulated in AMPKα2-KO mice, respectively. Five genes: Car3 (carbonic anhydrase 3), Mylk4 (myosin light chain kinase family, member 4), Neb (nebulin), Obscn (obscurin) and Pfkm (phosphofructokinase, muscle) utilized different APSs with potentially antagonistic effects on muscle function. Overall, gene knockout triggers genome plasticity via use of APSs, completing the G2P processes. However, gene-based analysis failed to reach such a resolution. Therefore, we propose that alternative transcripts are minimal functional units in genomes and the traditional central dogma concept should be now examined under a systems biology approach.
Collapse
|
10
|
Dumler JS, Sinclair SH, Shetty AC. Alternative Splicing of Differentiated Myeloid Cell Transcripts after Infection by Anaplasma phagocytophilum Impacts a Selective Group of Cellular Programs. Front Cell Infect Microbiol 2018; 8:14. [PMID: 29456968 PMCID: PMC5801399 DOI: 10.3389/fcimb.2018.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic proteome diversity exceeds that encoded within individual genes, and results in part from alternative splicing events of pre-messenger RNA. The diversity of these splicing events can shape the outcome in development and differentiation of normal tissues, and is important in pathogenic circumstances such as cancer and some heritable conditions. A role for alternative splicing of eukaryotic genes in response to viral and intracellular bacterial infections has only recently been recognized, and plays an important role in providing fitness for microbial survival, while potentially enhancing pathogenicity. Anaplasma phagocytophilum survives within mammalian neutrophils by reshaping transcriptional programs that govern cellular functions. We applied next generation RNAseq to ATRA-differentiated HL-60 cells established to possess transcriptional and functional responses similar to A. phagocytophilum-infected human neutrophils. This demonstrated an increase in transcripts with infection and high proportion of alternatively spliced transcript events (ASEs) for which predicted gene ontology processes were in part distinct from those identified by evaluation of single transcripts or gene-level analyses alone. The alternative isoforms are not on average shorter, and no alternative splicing in genes encoding spliceosome components is noted. Although not evident at gene-level analyses, individual spliceosome transcripts that impact nearly all spliceosome components were significantly upregulated. How the distinct GO processes predicted by ASEs are regulated by infection and whether they are relevant to fitness or pathogenicity of A. phagocytophilum should be addressed in more detailed studies.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
11
|
Miles LB, Darido C, Kaslin J, Heath JK, Jane SM, Dworkin S. Mis-expression of grainyhead-like transcription factors in zebrafish leads to defects in enveloping layer (EVL) integrity, cellular morphogenesis and axial extension. Sci Rep 2017; 7:17607. [PMID: 29242584 PMCID: PMC5730563 DOI: 10.1038/s41598-017-17898-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.
Collapse
Affiliation(s)
- Lee B Miles
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Charbel Darido
- The Victorian Comprehensive Cancer Centre, Peter MacCallum Cancer Centre, Parkville, VIC, 3050, Australia
| | - Jan Kaslin
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Joan K Heath
- Department of Chemical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, 3050, Australia
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia.,Department of Hematology, Alfred Hospital, Prahran, VIC 3181, Australia
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|