1
|
Rao Z, Dai K, Han R, Xu C, Cao L. Meloidogyne incognita genes involved in the repellent behavior in response to ascr#9. Sci Rep 2024; 14:25706. [PMID: 39465253 PMCID: PMC11514155 DOI: 10.1038/s41598-024-76370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
Meloidogyne incognita is one of the globally serious plant parasitic nematodes. New control measure is urgently needed to replace the common chemical control method. Ascarosides are pheromones regulating the nematodes' aggregation, avoidance, mating, dispersal and dauer recovery and formation. Ascr#9, one of the ascarosides, exhibits the potential to repel M. incognita. However, the nematode genes involved in the perception of ascr# 9 signal are totally unknown. In this study, the transcriptome of ascr#9-treated second stage M. incognita juveniles (J2s) was analyzed, 44 pathways were significantly affected, multiple ligand-receptor and mucin type O-glycan were induced, and olfactory transduction was disturbed. A total of 11 highly differentially expressed genes involved in neuroactive ligand-receptor interaction and FMRFamide-like peptide related process were identified and knocked down by RNAi. The dispersal rates of M. incognita with three knocked-down genes (flp-14, mgl-1 and ADOR-1) significantly decreased, respectively, when ascr#9 was present. The results demonstrate that flp-14, mgl-1, and ADOR-1 are involved in the dispersal behavior of M. incognita nematodes responding to ascr#9, which promotes the interaction study between ascarosides and M. incognita, and provides new ideas for the prevention and control of M. incognita by using pheromone ascarosides.
Collapse
Affiliation(s)
- Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Kang Dai
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Chengti Xu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, China.
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
| |
Collapse
|
2
|
Abstract
Numerous examples of different phenotypic outcomes in response to varying environmental conditions have been described across phyla, from plants to mammals. Here, we examine the impact of the environment on different developmental traits, focusing in particular on one key environmental variable, nutrient availability. We present advances in our understanding of developmental plasticity in response to food variation using the nematode Caenorhabditis elegans, which provides a near-isogenic context while permitting lab-controlled environments and analysis of wild isolates. We discuss how this model has allowed investigators not only to describe developmental plasticity events at the organismal level but also to zoom in on the tissues involved in translating changes in the environment into a plastic response, as well as the underlying molecular pathways, and sometimes associated changes in behaviour. Lastly, we also discuss how early life starvation experiences can be logged to later impact adult physiological traits, and how such memory could be wired.
Collapse
Affiliation(s)
- Sophie Jarriault
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| | - Christelle Gally
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
3
|
Li Y, Chitturi J, Yu B, Zhang Y, Wu J, Ti P, Hung W, Zhen M, Gao S. UBR-1 ubiquitin ligase regulates the balance between GABAergic and glutamatergic signaling. EMBO Rep 2023; 24:e57014. [PMID: 37811674 PMCID: PMC10626437 DOI: 10.15252/embr.202357014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Excitation/inhibition (E/I) balance is carefully maintained by the nervous system. The neurotransmitter GABA has been reported to be co-released with its sole precursor, the neurotransmitter glutamate. The genetic and circuitry mechanisms to establish the balance between GABAergic and glutamatergic signaling have not been fully elucidated. Caenorhabditis elegans DVB is an excitatory GABAergic motoneuron that drives the expulsion step in the defecation motor program. We show here that in addition to UNC-47, the vesicular GABA transporter, DVB also expresses EAT-4, a vesicular glutamate transporter. UBR-1, a conserved ubiquitin ligase, regulates DVB activity by suppressing a bidirectional inhibitory glutamate signaling. Loss of UBR-1 impairs DVB Ca2+ activity and expulsion frequency. These impairments are fully compensated by the knockdown of EAT-4 in DVB. Further, glutamate-gated chloride channels GLC-3 and GLC-2/4 receive DVB's glutamate signals to inhibit DVB and enteric muscle activity, respectively. These results implicate an intrinsic cellular mechanism that promotes the inherent asymmetric neural activity. We propose that elevated glutamate in ubr-1 mutants, being the cause of the E/I shift, potentially contributes to Johanson Blizzard syndrome.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jyothsna Chitturi
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongning Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Panpan Ti
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Wesley Hung
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Mei Zhen
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Liu X, Bao X, Yang J, Zhu X, Li Z. Preliminary study on toxicological mechanism of golden cuttlefish (Sepia esculenta) larvae exposed to cd. BMC Genomics 2023; 24:503. [PMID: 37649007 PMCID: PMC10466719 DOI: 10.1186/s12864-023-09630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. RESULTS In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. CONCLUSIONS S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xibo Zhu
- Fishery Technology Service Center of Lanshan District, Rizhao, 276800, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
5
|
Chai CM, Torkashvand M, Seyedolmohadesin M, Park H, Venkatachalam V, Sternberg PW. Interneuron control of C. elegans developmental decision-making. Curr Biol 2022; 32:2316-2324.e4. [PMID: 35447086 DOI: 10.1016/j.cub.2022.03.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 01/18/2023]
Abstract
Natural environments are highly dynamic, and this complexity challenges animals to accurately integrate external cues to shape their responses. Adaptive developmental plasticity enables organisms to remodel their physiology, morphology, and behavior to better suit the predicted future environment and ultimately enhance their ecological success.1 Understanding how an animal generates a neural representation of current and forecasted environmental conditions and converts these circuit computations into a predictive adaptive physiological response may provide fundamental insights into the molecular and cellular basis of decision-making over developmentally relevant timescales. Although it is known that sensory cues usually trigger the developmental switch and that downstream inter-tissue signaling pathways enact the alternative developmental phenotype, the integrative neural mechanisms that transduce external inputs into effector pathways are less clear.2,3 In adverse environments, Caenorhabditis elegans larvae can enter a stress-resistant diapause state with arrested metabolism and reproductive physiology.4 Amphid sensory neurons feed into both rapid chemotactic and short-term foraging mode decisions, mediated by amphid and pre-motor interneurons, as well as the long-term diapause entry decision. Here, we identify amphid interneurons that integrate pheromone cues and propagate this information via a neuropeptidergic pathway to influence larval developmental fate, bypassing the pre-motor system. AIA interneuron-derived FLP-2 neuropeptide signaling promotes reproductive growth, and AIA activity is suppressed by pheromones. FLP-2 signaling is inhibited by upstream glutamatergic transmission via the metabotropic receptor MGL-1 and mediated by the broadly expressed neuropeptide G-protein-coupled receptor NPR-30. Thus, metabotropic signaling allows the reuse of parts of a sensory system for a decision with a distinct timescale.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Mahdi Torkashvand
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | | | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Vivek Venkatachalam
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Sakai N, Ohno H, Yoshida M, Iwamoto E, Kurogi A, Jiang D, Sato T, Miyazato M, Kojima M, Kato J, Ida T. Characterization of putative tachykinin peptides in Caenorhabditis elegans. Biochem Biophys Res Commun 2021; 559:197-202. [PMID: 33945998 DOI: 10.1016/j.bbrc.2021.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022]
Abstract
Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, -2, and -3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hayao Ohno
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Morikatsu Yoshida
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Eri Iwamoto
- Clinical Research Center, Kurume University Hospital, Fukuoka, 830-0011, Japan
| | - Akito Kurogi
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Danfeng Jiang
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, 830-0011, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, 830-0011, Japan
| | - Johji Kato
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
7
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Developmental plasticity and the response to nutrient stress in Caenorhabditis elegans. Dev Biol 2021; 475:265-276. [PMID: 33549550 DOI: 10.1016/j.ydbio.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Developmental plasticity refers the ability of an organism to adapt to various environmental stressors, one of which is nutritional stress. Caenorhabditis elegans require various nutrients to successfully progress through all the larval stages to become a reproductive adult. If nutritional criteria are not satisfied, development can slow or completely arrest. In poor growth conditions, the animal can enter various diapause stages, depending on its developmental progress. In C. elegans, there are three well-characterized diapauses: the L1 arrest, the dauer diapause, and adult reproductive diapause, each associated with drastic changes in metabolism and germline development. At the centre of these changes is AMP-activated protein kinase (AMPK). AMPK is a metabolic regulator that maintains energy homeostasis, particularly during times of nutrient stress. Without AMPK, metabolism is disrupted during dauer, leading to the rapid consumption of lipid stores as well as misregulation of metabolic enzymes, leading to reduced survival. During the L1 arrest and dauer diapause, AMPK is responsible for ensuring germline quiescence by modifying the germline chromatin landscape to maintain germ cell integrity until conditions improve. Similar to classic hormonal signalling, small RNAs also play a critical role in regulating development and behaviour in a cell non-autonomous fashion. Thus, during the challenges associated with developmental plasticity, AMPK summons an army of signalling pathways to work collectively to preserve reproductive fitness during these periods of unprecedented uncertainty.
Collapse
|
9
|
Sadananda G, Subramaniam JR. Absence of metabotropic glutamate receptor homolog(s) accelerates acetylcholine neurotransmission in Caenorhabditis elegans. Neurosci Lett 2021; 746:135666. [PMID: 33493646 DOI: 10.1016/j.neulet.2021.135666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
Glutamate (Glu) and Acetylcholine (ACh), are excitatory neurotransmitters, acting through ionotropic (iR) and metabotropic receptors (mR). Importantly, both neurotransmitters and their signalling are impaired in the prevalent neurodegenerative disease-Alzheimer disease (AD). Glu and its signalling cascade's influence on ACh-neurotransmission (NT) are sparsely understood. The mGluRs coupled to G-protein signalling acting through PI3K cascade (GrpI) or inhibition of adenylate cyclase-cAMP cascade (GrpII and GrpIII) brings about long-lasting structural/functional changes. These complexities are challenging to decipher. Here, we report that human/mouse mGluRs when compared with their Caenorhabditis elegans homologs, MGL-1-3 showed overall of homology of ∼31-39 %. Phylogeneitc analysis revealed homology of MGL-2 to GrpI, MGL-3 with Grp1 &II and GRM6 of GrpIII and MGL-1, a low homology that falls between GrpI & GrpII. Then, alteration of ACh-NT in C. elegans loss-of-function mutants of mgl-1, mgl-2, mgl-3, PI3K (age-1) and iGluR (NMDA)(nmr-1) was estimated by well-established acute aldicarb (Ald), that increases ACh at synapse, and levamisole (Lev) (postsynaptic activation of levamisole sensitive iAChR) induced time-dependent paralysis assays. Surprisingly, all of them were hypersensitive to Ald and Lev compared to wildtype (in percentage), namely, mgl-1 -17, 54; mgl-2 - 7.2, 24; mgl-3 -52, 64; age-1 - 27, 32; nmr-1- 24, 48; respectively. Of the three, mgl-3 contributes to maximal overall acceleration of ACh-NT. Adenylate cyclase, acy-1 gain-of-function mutant showed less hypersensitivity, Ald - 7% and Lev- 25 %. Together, Glu receptors and signalling cascades are altering ACh-NT permanently, thus establishing the interplay between them thereby provide potential drug targets to be considered for AD.
Collapse
Affiliation(s)
- Girish Sadananda
- Center for Preclinical and Translational Medicine Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India
| | - Jamuna R Subramaniam
- Center for Preclinical and Translational Medicine Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India.
| |
Collapse
|
10
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
11
|
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans. Bioessays 2020; 42:e1900194. [PMID: 32003906 DOI: 10.1002/bies.201900194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022]
Abstract
In response to nutrient limitation, many animals, including Caenorhabditis elegans, slow or arrest their development. This process requires mechanisms that sense essential nutrients and induce appropriate responses. When faced with nutrient limitation, C. elegans can induce both short and long-term survival strategies, including larval arrest, decreased developmental rate, and dauer formation. To select the most advantageous strategy, information from many different sensors must be integrated into signaling pathways, including target of rapamycin (TOR) and insulin, that regulate developmental progression. Here, how nutrient information is sensed and integrated into developmental decisions that determine developmental rate and progression in C. elegans is reviewed.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| |
Collapse
|
12
|
Ashida K, Hotta K, Oka K. The Input-Output Relationship of AIY Interneurons in Caenorhabditis elegans in Noisy Environment. iScience 2019; 19:191-203. [PMID: 31377664 PMCID: PMC6698291 DOI: 10.1016/j.isci.2019.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Determining how neurotransmitter input causes various neuronal activities is crucial to understanding neuronal information processing. In Caenorhabditis elegans, AIY interneurons receive several sources of sensory information as glutamate inputs and regulate behavior by integrating these inputs. However, the relationship between glutamate input and the Ca2+ response in AIY under environmental noise, in other words, without explicit stimulation, remains unknown. Here, we show that glutamate-input fluctuations evoke a sporadic Ca2+ response in AIY without stimulation. To ensure that Ca2+ response can be considered AIY output, we show that the membrane-potential depolarization precedes Ca2+ responses in AIY. We used an odor as model stimulation to modulate the sensory inputs. Simultaneous imaging of glutamate input and Ca2+ response, together with glutamate transmission mutants, showed that glutamate-input fluctuations evoke sporadic Ca2+ responses. We identified the input-output relationships under environmental noise in vivo, and our results address the relationship between sensory-input fluctuations and behavioral variability.
Collapse
Affiliation(s)
- Keita Ashida
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
13
|
Dillon J, Holden-Dye L, O'Connor V. Yeast two-hybrid screening identifies MPZ-1 and PTP-1 as candidate scaffolding proteins of metabotropic glutamate receptors in Caenorhabditis elegans. INVERTEBRATE NEUROSCIENCE 2018; 18:16. [PMID: 30417267 DOI: 10.1007/s10158-018-0218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are a class of G-protein-coupled receptor that undergo extensive interactions with scaffolding proteins, and this is intrinsic to their function as an important group of neuromodulators at glutamatergic synapses. The Caenorhabditis elegans nervous system expresses three metabotropic glutamate receptors, MGL-1, MGL-2 and MGL-3. Relatively little is known about how the function and signalling of these receptors is organised in C. elegans. To identify proteins that scaffold the MGL-1 receptor, we have conducted a yeast two-hybrid screen. Three of the interacting proteins, MPZ-1, NRFL-1 and PTP-1, displayed motifs characteristic of mammalian mGluR scaffolding proteins. Using cellular co-expression criterion, we show mpz-1 and ptp-1 exhibited overlapping expression patterns with subsets of mgl-1 neurons. This included neurones in the pharyngeal nervous system that control the feeding organ of the worm. The mGluR agonist L-CCG-I inhibits the activity of this network in wild-type worms, in an MGL-1 and dose-dependent manner. We utilised L-CCG-I to identify if MGL-1 function was disrupted in mutants with deletions in the mpz-1 gene. The mpz-1 mutants displayed a largely wild-type response to L-CCG-I, suggesting MGL-1 signalling is not overtly disrupted consistent with a non-obligatory modulatory function in receptor scaffolding. The selectivity of the protein interactions and overlapping expression identified here warrant further investigation of the functional significance of scaffolding of metabotropic glutamate receptor function.
Collapse
Affiliation(s)
- James Dillon
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Lindy Holden-Dye
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Vincent O'Connor
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|