1
|
Nikas AN, Curcio EJ, Nascone-Yoder N, Lubkin SR. Morphoelastic models discriminate between different mechanisms of left-right asymmetric stomach morphogenesis. Cells Dev 2024; 177:203902. [PMID: 38281683 PMCID: PMC11409938 DOI: 10.1016/j.cdev.2024.203902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
The mechanisms by which the vertebrate stomach undergoes its evolutionarily conserved leftward bending remain incompletely understood. Although the left and right sides of the organ are known to possess different gene expression patterns and undergo distinct morphogenetic events, the physical mechanisms by which these differences generate morphological asymmetry remain unclear. Here, we develop a continuum model of asymmetric stomach morphogenesis. Using a morphoelastic framework, we investigate the morphogenetic implications of a variety of hypothetical, tissue-level growth differences between the left and right sides of a simplified tubular organ. Simulations reveal that, of the various differential growth mechanisms tested, only one category is consistent with the leftward stomach curvature observed in wild-type embryos: equal left and right volumetric growth rates, coupled with transversely isotropic tissue thinning on the left side. Simulating this mechanism in a defined region of the model over a longer period of growth leads to mature stomach-like curvatures.
Collapse
|
2
|
Saisawart P, Sutthigran S, Soontornvipart K, Thanaboonnipat C, Darawiroj D, Choisunirachon N. The Feasibility of Ultrasonographic Diaphragmatic Excursion in Healthy Dogs: Effect of Positioning, Diaphragmatic Location, and Body Weight of Dogs. Front Vet Sci 2021; 8:763556. [PMID: 34859091 PMCID: PMC8631322 DOI: 10.3389/fvets.2021.763556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Diaphragmatic excursion (DE) has been utilized for detecting respiratory related problems in humans. However, several factors should be considered such as the ultrasound technique and factors intrinsic to patients. Nevertheless, knowledge of the effect of these factors on DE in dogs is still lacking. The aim of this study was to evaluate the proper ultrasound technique by varying postures and diaphragmatic locations for DE measurement and to explore intrinsic factors such as diaphragmatic sides, sex, and body weight of dogs on DE. The prospective, analytic, cross-sectional study included 44 healthy dogs; 12 beagles and 32 dogs of other breeds. The experiment was divided into (i) an exploration of the proper ultrasound technique by varying postures (supine, standing, and recumbent in each of the right and left lateral positions), diaphragmatic locations (middle crus and proximal to the last rib), and diaphragmatic sublocations (xiphoid, mid, and proximal rib) for detection of DE and (ii) the evaluation of canine intrinsic factors affecting DE. The results show that the mid-diaphragmatic sublocation in the middle crus area in almost all positions revealed the highest percentage DE detection. However, DEs were revealed to be more accessible in the supine position. There was no significant difference in DE between the right and the left diaphragms or between the sexes of beagle dogs. However, body weight was significantly correlated with the DE among dogs of various sizes. In conclusion, the posture of the dogs and the diaphragmatic location can affect DE evaluation. Neither sex nor diaphragmatic side had an influence, but body weight was revealed as a major factor in DE in dogs.
Collapse
Affiliation(s)
- Phasamon Saisawart
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somchin Sutthigran
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kumpanart Soontornvipart
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Thanaboonnipat
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Damri Darawiroj
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nan Choisunirachon
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Seidl‐Mlczoch E, Kasprian G, Ba‐ssalamah A, Stuempflen M, Kitzmueller E, Muin DA, Zimpfer D, Prayer D, Michel‐behnke I, Ulm B. Characterization of phenotypic spectrum of fetal heterotaxy syndrome by combining ultrasound and magnetic resonance imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:837-845. [PMID: 34097330 PMCID: PMC9299896 DOI: 10.1002/uog.23705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Heterotaxy or isomerism of the atrial appendages is a congenital disorder with variable presentation, associated with both cardiac and non-cardiac anomalies, which may have a serious impact on fetal outcome. The aim of this exploratory study was to assess the value of fetal magnetic resonance imaging (MRI), as a complementary tool to ultrasound, for describing the morphological spectrum encountered in heterotaxy. METHODS This retrospective study included 27 fetuses that underwent fetal MRI following prenatal suspicion of heterotaxy on ultrasound from 1998 to 2019 in a tertiary referral center. Heterotaxy was classified as left atrial isomerism (LAI) or right atrial isomerism (RAI) based on fetal echocardiography (FE) examination. In addition to routine prenatal ultrasound, fetal MRI was offered routinely to enhance the diagnosis of non-cardiac anomalies, which might have been missed on ultrasound. Prenatal findings on ultrasound, FE and MRI were reviewed systematically and compared with those of postnatal imaging and autopsy reports. RESULTS Twenty-seven fetuses with heterotaxy and cardiovascular pathology, of which 19 (70%) had LAI and eight (30%) had RAI, were included. Seven (7/19 (37%)) fetuses with LAI had normal intracardiac anatomy, whereas all fetuses with RAI had a cardiac malformation. All 27 fetuses had non-cardiac anomalies on fetal MRI, including situs and splenic anomalies. In 12/19 (63%) fetuses with LAI, a specific abnormal configuration of the liver was observed on MRI. In three fetuses, fetal MRI revealed signs of total anomalous pulmonary venous connection obstruction. An abnormal bronchial tree pattern was suspected on prenatal MRI in 6/19 (32%) fetuses with LAI and 3/8 (38%) fetuses with RAI. CONCLUSIONS Visualization on MRI of non-cardiac anomalies in fetuses with suspected heterotaxy is feasible and can assist the complex diagnosis of this condition, despite its limitations. This modality potentially enables differentiation of less severe cases from more complex ones, which may have a poorer prognosis. Fetal MRI can assist in prenatal counseling and planning postnatal management. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- E. Seidl‐Mlczoch
- Pediatric Heart Center, Department of Pediatrics and Adolescent Medicine, Division of Pediatric CardiologyMedical University of ViennaViennaAustria
| | - G. Kasprian
- Department of Biomedical Imaging and Image‐guided Therapy, Division of Neuroradiology and Musculoskeletal RadiologyMedical University of Vienna, ViennaAustria
| | - A. Ba‐ssalamah
- Department of Biomedical Imaging and Image‐guided Therapy, Division of Neuroradiology and Musculoskeletal RadiologyMedical University of Vienna, ViennaAustria
| | - M. Stuempflen
- Department of Biomedical Imaging and Image‐guided Therapy, Division of Neuroradiology and Musculoskeletal RadiologyMedical University of Vienna, ViennaAustria
| | - E. Kitzmueller
- Pediatric Heart Center, Department of Pediatrics and Adolescent Medicine, Division of Pediatric CardiologyMedical University of ViennaViennaAustria
| | - D. A. Muin
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Fetomaternal MedicineMedical University of Vienna, ViennaAustria
| | - D. Zimpfer
- Department of Cardiac Surgery, Pediatric Heart Center ViennaMedical University of Vienna, ViennaAustria
| | - D. Prayer
- Department of Biomedical Imaging and Image‐guided Therapy, Division of Neuroradiology and Musculoskeletal RadiologyMedical University of Vienna, ViennaAustria
| | - I. Michel‐behnke
- Pediatric Heart Center, Department of Pediatrics and Adolescent Medicine, Division of Pediatric CardiologyMedical University of ViennaViennaAustria
| | - B. Ulm
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Fetomaternal MedicineMedical University of Vienna, ViennaAustria
| |
Collapse
|
4
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
6
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
7
|
HAMADA H. Molecular and cellular basis of left-right asymmetry in vertebrates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:273-296. [PMID: 32788551 PMCID: PMC7443379 DOI: 10.2183/pjab.96.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the human body appears superficially symmetrical with regard to the left-right (L-R) axis, most visceral organs are asymmetric in terms of their size, shape, or position. Such morphological asymmetries of visceral organs, which are essential for their proper function, are under the control of a genetic pathway that operates in the developing embryo. In many vertebrates including mammals, the breaking of L-R symmetry occurs at a structure known as the L-R organizer (LRO) located at the midline of the developing embryo. This symmetry breaking is followed by transfer of an active form of the signaling molecule Nodal from the LRO to the lateral plate mesoderm (LPM) on the left side, which results in asymmetric expression of Nodal (a left-side determinant) in the left LPM. Finally, L-R asymmetric morphogenesis of visceral organs is induced by Nodal-Pitx2 signaling. This review will describe our current understanding of the mechanisms that underlie the generation of L-R asymmetry in vertebrates, with a focus on mice.
Collapse
Affiliation(s)
- Hiroshi HAMADA
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Correspondence should be addressed: H. Hamada, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan (e-mail: )
| |
Collapse
|
8
|
Blum M, Ott T. Mechanical strain, novel genes and evolutionary insights: news from the frog left-right organizer. Curr Opin Genet Dev 2019; 56:8-14. [DOI: 10.1016/j.gde.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
|
9
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|