1
|
Mao C, Jiang Y, Li Z, Zhou W, Lai Y, Wang C, Lu M, Chen W. Embryonic exposure to Smoothened Agonist disrupts tongue development in mice. Dev Biol 2025; 524:36-46. [PMID: 40311729 DOI: 10.1016/j.ydbio.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The tongue is an important muscular organ for chewing and speech, and its development is regulated by multiple molecular signaling pathways, such as the hedgehog and TGF pathways. These pathways are particularly crucial in muscle patterning, which determines the structural and functional integrity of the tongue. Proper hedgehog signaling is essential for craniofacial tissue development, influencing muscle arrangement and differentiation critical for normal tongue morphology. In this study, we administered the Smoothened Agonist (SAG) 25 mg/kg to pregnant mice via intraperitoneal injection at E10.5 to further investigate the regulatory role of overexpressed hedgehog signaling in the early developmental process of the tongue. The intraperitoneal injection of SAG at E10.5 resulted in reduced tongue height and abnormal muscle development. Consequently, these alterations led to a midline cleft. Detection of cell proliferation using PHH3 and Ki67 showed that cell proliferation was significantly inhibited in the experimental group, while apoptosis showed no significant difference compared to the control group. At E11.5, the expression levels of downstream markers of hedgehog signaling, including Gli1, Ptch1, Foxf1, and Foxf2, were significantly elevated in the experimental group compared to the control group, whereas TGF-β2 mRNA expression was significantly downregulated(P < 0.05). Thus, overexpression of hedgehog signaling, induced by SAG, disrupts normal cellular processes by inhibiting proliferation and downregulating TGF-β2, ultimately leading to cleft tongue malformations.
Collapse
Affiliation(s)
- Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuanjing Jiang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Zuhui Li
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Wenjie Zhou
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chengyong Wang
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Meng Lu
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Zhang C, Zheng Y, Qu Y, Huang R, Huang H, Li J, Qiu M, Li F. Transcriptional factor ISL1 regulates palate development by tuning the SHH cascade. FEBS J 2025; 292:851-863. [PMID: 39704783 DOI: 10.1111/febs.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Cleft palate is one of the most common birth defects in humans, and palate morphogenesis depends on epithelial-mesenchymal interaction. In this study, we report that ablation of Isl1 in the epithelium leads to complete cleft palate. A significant reduction in mesenchymal cell proliferation was detected in the Isl1Pitx2Cre mutant palates, but there was no significant difference in apoptosis between wild-type and mutant embryos. Fewer rugae structures were observed in Isl1Pitx2Cre mutant embryos. Shh, Sox2, Foxe1, Foxd2, and Msx1 expression was downregulated in the developing palate in Isl1 mutant embryos. We found that ISL1 can directly regulate Shh expression in palatal epithelial cells, suggesting a critical role for ISL1 in epithelial-mesenchymal interactions during palate development. Remarkably, cleft palate defects due to Isl1 deletion were rescued by a conditional transgenic allele (Tg-pmes-Ihh), confirming the genetic integration of Hedgehog signaling. Our findings indicate that ISL1 controls palatal shelf morphogenesis by modulating epithelial-mesenchymal communication via SHH signaling.
Collapse
Affiliation(s)
- Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Yuting Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Yaping Qu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| |
Collapse
|
3
|
Li Y, Giovannini S, Wang T, Fang J, Li P, Shao C, Wang Y, Shi Y, Candi E, Melino G, Bernassola F. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42:3371-3384. [PMID: 37848625 PMCID: PMC10638092 DOI: 10.1038/s41388-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.
Collapse
Affiliation(s)
- Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai, 200031, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
4
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
He Q, Hao X, Bao S, Wu X, Xu L, Hou Y, Huang Y, Peng L, Huang H, Ding Y, Zhao H. A392V and R945X mutations cause orofacial clefts via impairing PTCH1 function. Genomics 2022; 114:110507. [PMID: 36265746 DOI: 10.1016/j.ygeno.2022.110507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 01/15/2023]
Abstract
The Hedgehog (HH) signaling plays key roles in embryogenesis and organogenesis, and its dysfunction causes a variety of human birth defects. Orofacial cleft (OFC) is one of the most common congenital craniofacial defects, and its etiology is closely related to mutations in multiple components in the HH pathway, including the PTCH1 receptor. A quantity of PTCH1 variants have been associated with OFC, but the pathogenicity and underlying mechanism of these variants have not been functionally validated. In our previous studies, we identified two PTCH1 variants (A392V and R945X) in two families with hereditary OFC. Here we explore the functional consequences of these two variants. In zebrafish embryos, microinjection of wild type PTCH1 mRNA causes curved body axis and craniofacial anomalies. In contrast, microinjection of A392V and R945X PTCH1 mRNAs results in much milder phenotypes, suggesting these two variants are loss-of-function mutations. In mammalian cells, A392V and R945X mutations reverse the inhibitory effect of PTCH1 on HH signaling. Biochemically, the two mutants PTCH1 show lower expression levels and shortened half-life, indicting these mutations decrease the stability of PTCH1. A392V and R945X mutations also appear to cause PTCH1 to localize away from vesicles. Taken together, our findings indicate that A392V and R945X variants are loss-of-function mutations that disrupt the function of PTCH1 and thus cause dysregulation of HH signaling, leading to the pathogenesis of OFC.
Collapse
Affiliation(s)
- Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xingke Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Shanying Bao
- Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, Qinghai, PR China
| | - Xiantao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Leiyuan Peng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, PR China.
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
6
|
Adachi Y, Higuchi A, Wakai E, Shiromizu T, Koiwa J, Nishimura Y. Involvement of homeobox transcription factor Mohawk in palatogenesis. Congenit Anom (Kyoto) 2022; 62:27-37. [PMID: 34816492 DOI: 10.1111/cga.12451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Palatogenesis is affected by many factors, including gene polymorphisms and exposure to toxic chemicals during sensitive developmental periods. Cleft palate is one of the most common congenital anomalies, and ongoing efforts to elucidate the molecular mechanisms underlying palatogenesis are providing useful insights to reduce the risk of this disorder. To identify novel potential regulators of palatogenesis, we analyzed public transcriptome datasets from a mouse model of cleft palate caused by selective deletion of transforming growth factor-β (TGFβ) receptor type 2 in cranial neural crest cells. We identified the homeobox transcription factor Mohawk (Mkx) as a gene downregulated in the maxilla of TGFβ knockout mice compared with wild-type mice. To examine the role of mkx in palatogenesis, we used CRISPR/Cas9 editing to generate zebrafish with impaired expression of mkxa and mkxb, the zebrafish homologs of Mkx. We found that mkx crispants expressed reduced levels of gli1, a critical transcription factor in the Sonic hedgehog (SHH) signaling pathway that plays an important role in the regulation of palatogenesis. Furthermore, we found that mkxa-/- zebrafish were more susceptible than mkxa+/+ zebrafish to the deleterious effects of cyclopamine, an inhibitor of SHH signaling, on upper jaw development. These results suggest that Mkx may be involved in palatogenesis regulated by TGFβ and SHH signaling, and that impairment in Mkx function may be related to the etiology of cleft palate.
Collapse
Affiliation(s)
- Yuka Adachi
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Aina Higuchi
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Eri Wakai
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Junko Koiwa
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
7
|
Schmidt J, Schreiber G, Altmüller J, Thiele H, Nürnberg P, Li Y, Kaulfuß S, Funke R, Wilken B, Yigit G, Wollnik B. Familial cleft tongue caused by a unique translation initiation codon variant in TP63. Eur J Hum Genet 2021; 30:211-218. [PMID: 34629465 PMCID: PMC8821562 DOI: 10.1038/s41431-021-00967-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
Variants in transcription factor p63 have been linked to several autosomal dominantly inherited malformation syndromes. These disorders show overlapping phenotypic characteristics with various combinations of the following features: ectodermal dysplasia, split-hand/foot malformation/syndactyly, lacrimal duct obstruction, hypoplastic breasts and/or nipples, ankyloblepharon filiforme adnatum, hypospadias and cleft lip/palate. We describe a family with six individuals presenting with a striking novel phenotype characterized by a furrowed or cleft tongue, a narrow face, reddish hair, freckles and various foot deformities. Whole-exome sequencing (WES) identified a novel heterozygous variant, c.3G>T, in TP63 affecting the translation initiation codon (p.1Met?). Sanger sequencing confirmed dominant inheritance of this unique variant in all six affected family members. In summary, our findings indicate that heterozygous variants in TP63 affecting the first translation initiation codon result in a novel phenotype dominated by a cleft tongue, expanding the complex genotypic and phenotypic spectrum of TP63-associated disorders.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Gudrun Schreiber
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf Funke
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Bernd Wilken
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
9
|
Ohki S, Oka K, Ogata K, Okuhara S, Rikitake M, Toda-Nakamura M, Tamura S, Ozaki M, Iseki S, Sakai T. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development. Front Physiol 2020; 11:532. [PMID: 32581832 PMCID: PMC7287209 DOI: 10.3389/fphys.2020.00532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
During palatogenesis, the palatal shelves first grow vertically on either side of the tongue before changing their direction of growth to horizontal. The extracellular matrix (ECM) plays an important role in these dynamic changes in palatal shelf morphology. Tenascin-C (TNC) is an ECM glycoprotein that shows unique expression in the posterior part of the palatal shelf, but little is known about the regulation of TNC expression. Since transforming growth factor-beta-3 (TGF-β3) and sonic hedgehog (SHH) signaling are known to play important roles in palatogenesis, we investigated whether TGF-β3 and SHH are involved in the regulation of TNC expression in the developing palate. TGF-β3 increased the expression of TNC mRNA and protein in primary mouse embryonic palatal mesenchymal cells (MEPM) obtained from palatal mesenchyme dissected at embryonic day 13.5-14.0. Interestingly, immunohistochemistry experiments revealed that TNC expression was diminished in K14-cre;Tgfbr2 fl/fl mice that lack the TGF-β type II receptor in palatal epithelial cells and exhibit cleft soft palate, whereas TNC expression was maintained in Wnt1-cre;Tgfbr2 fl/fl mice that lack the TGF-β type II receptor in palatal mesenchymal cells and exhibit a complete cleft palate. SHH also increased the expression of TNC mRNA and protein in MEPM cells. However, although TGF-β3 up-regulated TNC mRNA and protein expression in O9-1 cells (a cranial neural crest cell line), SHH did not. Furthermore, TGF-β inhibited the expression of osteoblastic differentiation markers (osterix and alkaline phosphatase) and induced the expression of fibroblastic markers (fibronectin and periostin) in O9-1 cells, whereas SHH did not affect the expression of osteoblastic and fibroblastic markers in O9-1 cells. However, immunohistochemistry experiments showed that TNC expression was diminished in the posterior palatal shelves of Shh-/+ ;MFCS4 +/- mice, which have deficient SHH signaling in the posterior palatal epithelium. Taken together, our findings support the proposal that TGF-β and SHH signaling in palatal epithelium co-ordinate the expression of TNC in the posterior palatal mesenchyme through a paracrine mechanism. This signal cascade may work in the later stage of palatogenesis when cranial neural crest cells have differentiated into fibroblast-like cells. The spatiotemporal regulation of ECM-related proteins by TGF-β and SHH signaling may contribute not only to tissue construction but also to cell differentiation or determination along the anterior-posterior axis of the palatal shelves.
Collapse
Affiliation(s)
- Shirabe Ohki
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Kayoko Ogata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.,Section of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Shigeru Okuhara
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mihoko Rikitake
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masako Toda-Nakamura
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Shougo Tamura
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masao Ozaki
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Sakai
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
10
|
Girardet L, Bernet A, Calvo E, Soulet D, Joly-Beauparlant C, Droit A, Cyr DG, Belleannée C. Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium. FASEB J 2020; 34:7593-7609. [DOI: 10.1096/fj.202000328r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Girardet
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Agathe Bernet
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Ezéquiel Calvo
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Denis Soulet
- Faculty of Pharmacy Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory Research Centre Faculty of Medicine Laval University Quebec City QC Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre Faculty of Medicine Laval University Quebec City QC Canada
| | - Daniel G. Cyr
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
- Laboratory for Reproductive Toxicology INRS‐Institut Armand‐Frappier Université du Québec Laval QC Canada
| | - Clémence Belleannée
- Faculty of Medicine Department of Obstetrics, Gynecology and Reproduction Université Laval, CHU de Québec Research Center (CHUL) Quebec City QC Canada
| |
Collapse
|
11
|
Li J, Rodriguez G, Han X, Janečková E, Kahng S, Song B, Chai Y. Regulatory Mechanisms of Soft Palate Development and Malformations. J Dent Res 2019; 98:959-967. [PMID: 31150594 PMCID: PMC6651766 DOI: 10.1177/0022034519851786] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Orofacial clefting is the most common congenital craniofacial malformation, appearing in approximately 1 in 700 live births. Orofacial clefting includes several distinct anatomic malformations affecting the upper lip and hard and soft palate. The etiology of orofacial clefting is multifactorial, including genetic or environmental factors or their combination. A large body of work has focused on the molecular etiology of cleft lip and clefts of the hard palate, but study of the underlying etiology of soft palate clefts is an emerging field. Recent advances in the understanding of soft palate development suggest that it may be regulated by distinct pathways from those implicated in hard palate development. Soft palate clefting leads to muscle misorientation and oropharyngeal deficiency and adversely affects speech, swallowing, breathing, and hearing. Hence, there is an important need to investigate the regulatory mechanisms of soft palate development. Significantly, the anatomy, function, and development of soft palatal muscles are similar in humans and mice, rendering the mouse an excellent model for investigating molecular and cellular mechanisms of soft palate clefts. Cranial neural crest-derived cells provide important regulatory cues to guide myogenic progenitors to differentiate into muscles in the soft palate. Signals from the palatal epithelium also play key roles via tissue-tissue interactions mediated by Tgf-β, Wnt, Fgf, and Hh signaling molecules. Additionally, mutations in transcription factors, such as Dlx5, Tbx1, and Tbx22, have been associated with soft palate clefting in humans and mice, suggesting that they play important regulatory roles during soft palate development. Finally, we highlight the importance of distinguishing specific types of soft palate defects in patients and developing relevant animal models for each of these types to improve our understanding of the regulatory mechanism of soft palate development. This knowledge will provide a foundation for improving treatment for patients in the future.
Collapse
Affiliation(s)
- J. Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - G. Rodriguez
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - X. Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - E. Janečková
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S. Kahng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - B. Song
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Y. Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Abramyan J. Hedgehog Signaling and Embryonic Craniofacial Disorders. J Dev Biol 2019; 7:E9. [PMID: 31022843 PMCID: PMC6631594 DOI: 10.3390/jdb7020009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Since its initial discovery in a Drosophila mutagenesis screen, the Hedgehog pathway has been revealed to be instrumental in the proper development of the vertebrate face. Vertebrates possess three hedgehog paralogs: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Of the three, Shh has the broadest range of functions both in the face and elsewhere in the embryo, while Ihh and Dhh play more limited roles. The Hedgehog pathway is instrumental from the period of prechordal plate formation early in the embryo, until the fusion of the lip and secondary palate, which complete the major patterning events of the face. Disruption of Hedgehog signaling results in an array of developmental disorders in the face, ranging from minor alterations in the distance between the eyes to more serious conditions such as severe clefting of the lip and palate. Despite its critical role, Hedgehog signaling seems to be disrupted through a number of mechanisms that may either be direct, as in mutation of a downstream target of the Hedgehog ligand, or indirect, such as mutation in a ciliary protein that is otherwise seemingly unrelated to the Hedgehog pathway. A number of teratogens such as alcohol, statins and steroidal alkaloids also disrupt key aspects of Hedgehog signal transduction, leading to developmental defects that are similar, if not identical, to those of Hedgehog pathway mutations. The aim of this review is to highlight the variety of roles that Hedgehog signaling plays in developmental disorders of the vertebrate face.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| |
Collapse
|