1
|
Toga K, Sakamoto T, Kanda M, Tamura K, Okuhara K, Tabunoki H, Bono H. Long-read genome assembly of the Japanese parasitic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae). G3 (BETHESDA, MD.) 2024; 14:jkae127. [PMID: 38860489 PMCID: PMC11304982 DOI: 10.1093/g3journal/jkae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Copidosoma floridanum is a cosmopolitan species and an egg-larval parasitoid of the Plusiine moth. C. floridanum has a unique development mode called polyembryony, in which over two thousand genetically identical embryos are produced from a single egg. Some embryos develop into sterile soldier larvae precociously, and their emergence period and aggressive behavior differ between the US and Japanese C. floridanum strains. Genome sequencing expects to contribute to our understanding of the molecular bases underlying the progression of polyembryony. However, only the genome sequence of the US strain generated by the short-read assembly has been reported. In the present study, we determined the genome sequence of the Japanese strain using Pacific Biosciences high-fidelity reads and generating a highly contiguous assembly (552.7 Mb, N50: 17.9 Mb). Gene prediction and annotation identified 13,886 transcripts derived from 10,786 gene models. We searched the genomic differences between US and Japanese strains. Among gene models predicted in this study, 100 gene loci in the Japanese strain had extremely different gene structures from those in the US strain. This was accomplished through functional annotation (GGSEARCH) and long-read sequencing. Genomic differences between strains were also reflected in amino acid sequences of vasa that play a central role in caste determination in this species. The genome assemblies constructed in this study will facilitate the genomic comparisons between Japanese and US strains, leading to our understanding of detailed genomic regions responsible for the ecological and physiological characteristics of C. floridanum.
Collapse
Affiliation(s)
- Kouhei Toga
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Miyuki Kanda
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Research and Development Department, PtBio Inc., 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Keita Tamura
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Keisuke Okuhara
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Research and Development Department, PtBio Inc., 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hidemasa Bono
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| |
Collapse
|
2
|
Bono H, Sakamoto T, Kasukawa T, Tabunoki H. Systematic Functional Annotation Workflow for Insects. INSECTS 2022; 13:insects13070586. [PMID: 35886762 PMCID: PMC9319598 DOI: 10.3390/insects13070586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has revolutionized entomological study, rendering it possible to analyze the genomes and transcriptomes of non-model insects. However, use of this technology is often limited to obtaining the nucleotide sequences of target or related genes, with many of the acquired sequences remaining unused because other available sequences are not sufficiently annotated. To address this issue, we have developed a functional annotation workflow for transcriptome-sequenced insects to determine transcript descriptions, which represents a significant improvement over the previous method (functional annotation pipeline for insects). The developed workflow attempts to annotate not only the protein sequences obtained from transcriptome analysis but also the ncRNA sequences obtained simultaneously. In addition, the workflow integrates the expression-level information obtained from transcriptome sequencing for application as functional annotation information. Using the workflow, functional annotation was performed on the sequences obtained from transcriptome sequencing of the stick insect (Entoria okinawaensis) and silkworm (Bombyx mori), yielding richer functional annotation information than that obtained in our previous study. The improved workflow allows the more comprehensive exploitation of transcriptome data and is applicable to other insects because the workflow has been openly developed on GitHub.
Collapse
Affiliation(s)
- Hidemasa Bono
- Laboratory of Bio-DX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan
- Correspondence: ; Tel.: +81-82-424-4013
| | - Takuma Sakamoto
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (T.S.); (H.T.)
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan;
| | - Hiroko Tabunoki
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (T.S.); (H.T.)
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|