1
|
Li S, Takada S, Abdel-Salam GMH, Abdel-Hamid MS, Zaki MS, Issa MY, Salem AMS, Koshimizu E, Fujita A, Fukai R, Ohshima T, Matsumoto N, Miyake N. Biallelic loss-of-function variants in GON4L cause microcephaly and brain structure abnormalities. NPJ Genom Med 2024; 9:55. [PMID: 39500882 PMCID: PMC11538285 DOI: 10.1038/s41525-024-00437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
We identified two homozygous truncating variants in GON4L [NM_001282860.2:c.62_63del, p.(Gln21Argfs*12) and c.5517+1G>A] in two unrelated families who presented prenatal-onset growth impairment, microcephaly, characteristic face, situs inversus, and developmental delay. The frameshift variant is predicted to invoke nonsense-mediated mRNA decay of all five known GON4L isoforms resulting in the complete loss of GON4L function. The splice site variant located at a region specific to the longer isoforms; therefore, defects of long GON4L isoforms may explain the phenotypes observed in the three patients. Knockdown of Gon4l in rat PC12 cells suppressed neurite outgrowth in vitro. gon4lb knockdown and knockout zebrafish successfully recapitulated the patients' phenotypes including craniofacial abnormalities. We also observed situs inversus in gon4lb-knockout zebrafish embryo. To our knowledge, the relationship between craniofacial abnormalities or situs inversus and gon4lb has not been reported before. Thus, our data provide evidence that GON4L is involved in craniofacial and left-right patterning during development.
Collapse
Affiliation(s)
- Simo Li
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Sanami Takada
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mahmoud Y Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Aida M S Salem
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoko Fukai
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Medical Science Services, IQVIA Services Japan G.K., Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
2
|
Cheng X, Ju J, Huang W, Duan Z, Han Y. cpt1b Regulates Cardiomyocyte Proliferation Through Modulation of Glutamine Synthetase in Zebrafish. J Cardiovasc Dev Dis 2024; 11:344. [PMID: 39590187 PMCID: PMC11594654 DOI: 10.3390/jcdd11110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Carnitine palmitoyltransferase 1b (Cpt1b) is a crucial rate-limiting enzyme in fatty acid metabolism, but its role and mechanism in early cardiac development remains unclear. Here, we show that cpt1b regulates cardiomyocyte proliferation during zebrafish development. Knocking out entire cpt1b coding sequences leads to impaired cardiomyocyte proliferation, while cardiomyocyte-specific overexpression of cpt1b promotes cardiomyocyte proliferation. RNA sequencing analysis and pharmacological studies identified glutamine synthetase as a key downstream effector of cpt1b in regulating cardiomyocyte proliferation. Our study elucidates a novel mechanism whereby cpt1b promotes zebrafish cardiomyocyte proliferation through glutamine synthetase, which provides new perspectives on the significance of fatty acid metabolism in heart development and the interplay between fatty acid and amino acid metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Yanchao Han
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
3
|
Hu B, Pinzour J, Patel A, Rooney F, Zerwic A, Gao Y, Nguyen NT, Xie H, Ye D, Lin F. Gα13 controls pharyngeal endoderm convergence by regulating E-cadherin expression and RhoA activation. Development 2024; 151:dev202597. [PMID: 39258889 PMCID: PMC11463957 DOI: 10.1242/dev.202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Pharyngeal endoderm cells undergo convergence and extension (C&E), which is essential for endoderm pouch formation and craniofacial development. Our previous work implicates Gα13/RhoA-mediated signaling in regulating this process, but the underlying mechanisms remain unclear. Here, we have used endoderm-specific transgenic and Gα13 mutant zebrafish to demonstrate that Gα13 plays a crucial role in pharyngeal endoderm C&E by regulating RhoA activation and E-cadherin expression. We showed that during C&E, endodermal cells gradually establish stable cell-cell contacts, acquire apical-basal polarity and undergo actomyosin-driven apical constriction, which are processes that require Gα13. Additionally, we found that Gα13-deficient embryos exhibit reduced E-cadherin expression, partially contributing to endoderm C&E defects. Notably, interfering with RhoA function disrupts spatial actomyosin activation without affecting E-cadherin expression. Collectively, our findings identify crucial cellular processes for pharyngeal endoderm C&E and reveal that Gα13 controls this through two independent pathways - modulating RhoA activation and regulating E-cadherin expression - thus unveiling intricate mechanisms governing pharyngeal endoderm morphogenesis.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua Pinzour
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Asmi Patel
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Faith Rooney
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amie Zerwic
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nhan T. Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Wang S, Lv T, Chen Q, Yang Y, Xu L, Zhang X, Wang E, Hu X, Liu Y. Transcriptome sequencing and lncRNA-miRNA-mRNA network construction in cardiac fibrosis and heart failure. Bioengineered 2022; 13:7118-7133. [PMID: 35235759 PMCID: PMC8974171 DOI: 10.1080/21655979.2022.2045839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cardiac fibrosis (CF) and heart failure (HF) are common heart diseases, and severe CF can lead to HF. In this study, we tried to find their common potential molecular markers, which may help the diagnosis and treatment of CF and HF. RNA library construction and high-throughput sequencing were performed. The DESeq2 package in R was used to screen differentially expressed mRNAs (DEmRNAs), differentially expressed lncRNA (DElncRNAs) and differentially expressed miRNA (DEmiRNAs) between different samples. The common DEmRNAs, DElncRNAs and DEmiRNAs for the two diseases were obtained. The ConsensusPathDB (CPDB) was used to perform biological function enrichment for common DEmRNAs. Gene interaction network was constructed to screen out key genes. Subsequently, real-time polymerase chain reaction (RT-PCR) verification was performed. Lastly, GSE104150 and GSE21125 data sets were utilized for expression validation and diagnostic analysis. There were 1477 DEmRNAs, 502 DElncRNAs and 36 DEmiRNAs between CF and healthy control group. There were 607 DEmRNAs, 379DElncRNAs,s and 42 DEmiRNAs between HF and healthy control group. CH and FH shared 146 DEmRNAs, 80 DElncRNAs, and 6 DEmiRNAs. Hsa-miR-144-3p, CCNE2, C9orf72, MAP3K20-AS1, LEF1-AS1, AC243772.2, FLJ46284, and AC239798.2 were key molecules in lncRNA-miRNA-mRNA network. In addition, hsa-miR-144-3p and CCNE2 may be considered as potential diagnostic gene biomarkers in HF. In this study, the identification of common biomarkers of CF and HF may help prevent CF to HF transition as early as possible.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Tianjie Lv
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Qincong Chen
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Yan Yang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Lei Xu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Xiaolei Zhang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Enmao Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Xitian Hu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Yuying Liu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| |
Collapse
|
5
|
Gao G, Hu S, Zhang K, Wang H, Xie Y, Zhang C, Wu R, Zhao X, Zhang H, Wang Q. Genome-Wide Gene Expression Profiles Reveal Distinct Molecular Characteristics of the Goose Granulosa Cells. Front Genet 2021; 12:786287. [PMID: 34992633 PMCID: PMC8725158 DOI: 10.3389/fgene.2021.786287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Granulosa cells (GCs) are decisive players in follicular development. In this study, the follicle tissues and GCs were isolated from the goose during the peak-laying period to perform hematoxylin-eosin staining and RNA-seq, respectively. Moreover, the dynamic mRNA and lncRNA expression profiles and mRNA-lncRNA network analysis were integrated to identify the important genes and lncRNAs. The morphological analysis showed that the size of the GCs did not significantly change, but the thickness of the granulosa layer cells differed significantly across the developmental stages. Subsequently, 14,286 mRNAs, 3,956 lncRNAs, and 1,329 TUCPs (transcripts with unknown coding potential) were detected in the GCs. We identified 37 common DEGs in the pre-hierarchical and hierarchical follicle stages, respectively, which might be critical for follicle development. Moreover, 3,089 significant time-course DEGs (Differentially expressed genes) and 13 core genes in 4 clusters were screened during goose GCs development. Finally, the network lncRNA G8399 with CADH5 and KLF2, and lncRNA G8399 with LARP6 and EOMES were found to be important for follicular development in GCs. Thus, the results would provide a rich resource for elucidating the reproductive biology of geese and accelerate the improvement of the egg-laying performance of geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keshan Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Haiwei Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Changlian Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xianzhi Zhao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Hongmei Zhang
- Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Qigui Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| |
Collapse
|
6
|
Colgan DF, Goodfellow RX, Colgan JD. The transcriptional regulator GON4L is required for viability and hematopoiesis in mice. Exp Hematol 2021; 98:25-35. [PMID: 33864850 DOI: 10.1016/j.exphem.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The Gon4l gene encodes a putative transcriptional regulator implicated in the control of both cell differentiation and proliferation. Previously, we described a mutant mouse strain called Justy in which splicing of pre-mRNA generated from Gon4l is disrupted. This defect severely reduces, but does not abolish, GON4L protein expression and blocks the formation of early B-lineage progenitors, suggesting Gon4l is required for B-cell development in vertebrates. Yet, mutations that disable Gon4l in zebrafish impair several facets of embryogenesis that include the initiation of primitive hematopoiesis, arguing this gene is needed for multiple vertebrate developmental pathways. To better understand the importance of Gon4l in mammals, we created mice carrying an engineered version of Gon4l that can be completely inactivated by Cre-mediated recombination. Breeding mice heterozygous for the inactivated Gon4l allele failed to yield any homozygous-null offspring, indicating Gon4l is an essential gene in mammals. Consistent with this finding, as well previously published results, cell culture studies revealed that loss of Gon4l blocks cell proliferation and compromises viability, suggesting a fundamental role in the control of cell division and survival. Studies using mixed bone marrow chimeras confirmed Gon4l is required for B-cell development but also found it is needed to maintain definitive hematopoietic stem/progenitor cells that are the source of all hematopoietic cell lineages. Our findings reveal Gon4l is an essential gene in mammals that is required to form the entire hematopoietic system.
Collapse
Affiliation(s)
- Diana F Colgan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Renee X Goodfellow
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - John D Colgan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA; Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA.
| |
Collapse
|
7
|
Li H, Wang J, Huang K, Zhang T, Gao L, Yang S, Yi W, Niu Y, Liu H, Wang Z, Wang G, Tao K, Wang L, Cai K. Nkx2.5 Functions as a Conditional Tumor Suppressor Gene in Colorectal Cancer Cells via Acting as a Transcriptional Coactivator in p53-Mediated p21 Expression. Front Oncol 2021; 11:648045. [PMID: 33869046 PMCID: PMC8047315 DOI: 10.3389/fonc.2021.648045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Yi
- Department of General Surgery, The Second People’s Hospital of Jingmen, Jingmen, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Yao Y, Marra AN, Yelon D. Pathways Regulating Establishment and Maintenance of Cardiac Chamber Identity in Zebrafish. J Cardiovasc Dev Dis 2021; 8:13. [PMID: 33572830 PMCID: PMC7912383 DOI: 10.3390/jcdd8020013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate heart is comprised of two types of chambers-ventricles and atria-that have unique morphological and physiological properties. Effective cardiac function depends upon the distinct characteristics of ventricular and atrial cardiomyocytes, raising interest in the genetic pathways that regulate chamber-specific traits. Chamber identity seems to be specified in the early embryo by signals that establish ventricular and atrial progenitor populations and trigger distinct differentiation pathways. Intriguingly, chamber-specific features appear to require active reinforcement, even after myocardial differentiation is underway, suggesting plasticity of chamber identity within the developing heart. Here, we review the utility of the zebrafish as a model organism for studying the mechanisms that establish and maintain cardiac chamber identity. By combining genetic and embryological approaches, work in zebrafish has revealed multiple players with potent influences on chamber fate specification and commitment. Going forward, analysis of cardiomyocyte identity at the single-cell level is likely to yield a high-resolution understanding of the pathways that link the relevant players together, and these insights will have the potential to inform future strategies in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; (Y.Y.); (A.N.M.)
| |
Collapse
|