1
|
Kispert A. Ureter development and associated congenital anomalies. Nat Rev Nephrol 2025; 21:366-382. [PMID: 40164775 DOI: 10.1038/s41581-025-00951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Malformations of the ureter are among the most common birth defects in humans. Although some of these anomalies are asymptomatic, others are clinically relevant, causing perinatal lethality or progressing to kidney failure in childhood. The genetic causes and developmental aetiology of ureteral anomalies are difficult to study in humans; however, embryological and genetic analyses in the mouse have provided insights into the complex developmental programmes that govern ureter formation from simple tissue primordia, and the pathological consequences that result from disruption of these programmes. Abnormalities in the formation of the nephric duct and ureteric bud lead to changes in the number of ureters (and kidneys), whereas the formation of ectopic ureteric buds, failure of the nephric duct to target the cloaca or failure of the distal ureter to mature underlie vesicoureteral reflux, ureter ectopia, ureterocoele and subsequent hydroureter. Alterations in ureter specification, early growth or cyto-differentiation programmes have now also been associated with various forms of perinatal hydroureter and hydronephrosis as a consequence of functional obstruction. The characterization of cellular processes and molecular drivers of ureterogenesis in the mouse may not only aid understanding of the aetiology of human ureteral anomalies, improve prognostication and benefit the development of therapeutic strategies, but may also prove important for efforts to generate a bioartificial organ.
Collapse
Affiliation(s)
- Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Ju H, Yu M, Du X, Xue S, Ye N, Sun L, Wu X, Xu H, Shen Q. Gestational diabetes mellitus induces congenital anomalies of the kidney and urinary tract in mice by altering RET/MAPK/ERK pathway. Biochem Biophys Res Commun 2024; 714:149959. [PMID: 38657443 DOI: 10.1016/j.bbrc.2024.149959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Gestational diabetes mellitus (GDM) presents a substantial population health concern. Previous studies have revealed that GDM can ultimately influence nephron endowment. In this study, we established a GDM mouse model to investigate the embryological alterations and molecular mechanisms underlying the development of congenital anomalies of the kidney and urinary tract (CAKUT) affected by GDM. Our study highlights that GDM could contribute to the manifestation of CAKUT, with prevalent phenotypes characterized by isolated hydronephrosis and duplex kidney complicated with hydronephrosis in mice. Ectopic ureteric buds (UBs) and extended length of common nephric ducts (CNDs) were noted in the metanephric development stage. The expression of Ret and downstream p-ERK activity were enhanced in UBs, which indicated the alteration of RET/MAPK/ERK pathway may be one of the mechanisms contributing to the increased occurrence of CAKUT associated with GDM.
Collapse
Affiliation(s)
- Haixin Ju
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xuanjin Du
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ningli Ye
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China
| | - Lei Sun
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Xiaohui Wu
- Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China; National Key Laboratory of Kidney Diseases, China.
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, China; National Key Laboratory of Kidney Diseases, China.
| |
Collapse
|