1
|
Gil N, Leurs N, Martinand-Mari C, Debiais-Thibaud M. The vertebrate small leucine-rich proteoglycans: amplification of a clustered gene family and evolution of their transcriptional profile in jawed vertebrates. G3 (BETHESDA, MD.) 2025; 15:jkaf003. [PMID: 39774651 PMCID: PMC11917481 DOI: 10.1093/g3journal/jkaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Small Leucine-Rich Proteoglycans (SLRPs) are a major family of vertebrate proteoglycans. In bony vertebrates, SLRPs have a variety of functions from structural to signaling and are found in extracellular matrices, notably in skeletal tissues. However, there is little or no data on the diversity, function and expression patterns of SLRPs in cartilaginous fishes, which hinders our understanding of how these genes evolved with the diversification of vertebrates, in particular regarding the early events of whole-genome duplications that shaped gnathostome and cyclostome genomes. We used a selection of chromosome-level assemblies of cartilaginous fish and other vertebrate genomes for phylogeny and synteny reconstructions, allowing better resolution and understanding of the evolution of this gene family in vertebrates. Novel SLRP members were uncovered together with specific loss events in different lineages. Our reconstructions support that the canonical SLRPs have originated from different series of tandem duplications that preceded the extant vertebrate last common ancestor, one of them even preceding the extant chordate last common ancestor. They then further expanded with additional tandem and whole-genome duplications during the diversification of extant vertebrates. Finally, we characterized the expression of several SLRP members in the small-spotted catshark Scyliorhinus canicula and from this, inferred conserved and derived SLRP expression in several skeletal and connective tissues in jawed vertebrates.
Collapse
Affiliation(s)
- Nathan Gil
- Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
| | - Nicolas Leurs
- Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
| | - Camille Martinand-Mari
- Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
| |
Collapse
|
2
|
Kariyayama H, Kawashima T, Wada H, Ozaki H. Domain-Shuffling in the Evolution of Cyclostomes and Gnathostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:59-79. [PMID: 39629881 PMCID: PMC11788884 DOI: 10.1002/jez.b.23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 02/04/2025]
Abstract
Vertebrates acquired various novel traits that were pivotal in their morphological evolution. Domain shuffling, rearrangements of functional domains between genes, is a key molecular mechanism in deuterostome evolution. However, comprehensive studies focusing on early vertebrates are lacking. With advancements in genomic studies, the genomes of early vertebrate groups and cyclostomes are now accessible, enabling detailed comparative analysis while considering the timing of gene acquisition during evolution. Here, we compared 22 metazoans, including four cyclostomes, to identify genes containing novel domain architectures acquired via domain-shuffling (DSO-Gs), in the common ancestor of vertebrates, gnathostomes, and cyclostomes. We found that DSO-Gs in the common ancestor of vertebrates were associated with novel vertebrate characteristics and those in the common ancestor of gnathostomes correlated with gnathostome-specific traits. Notably, several DSO-Gs acquired in common ancestors of vertebrates have been linked to myelination, a distinct characteristic of gnathostomes. Additionally, in situ hybridization revealed specific expression patterns for the three vertebrate DSO-Gs in cyclostomes, supporting their potential functions. Our findings highlight the significance of DSO-Gs in the emergence of novel traits in the common ancestors of vertebrates, gnathostomes, and cyclostomes.
Collapse
Grants
- The study was supported by Japan Society for the Promotion of Science (23128502, 15KT0074, 18H04004, 19K20394, and 22K17992) and Japan Science, Technology Agency (JPMJSP2124), and Japan Agency for Medical Research and Development (JP21zf0127005).
- The study was supported by Japan Society for the Promotion of Science (23128502, 15KT0074, 18H04004, 19K20394, and 22K17992) and Japan Science, Technology Agency (JPMJSP2124), and Japan Agency for Medical Research and Development (JP21zf0127005).
Collapse
Affiliation(s)
- Hirofumi Kariyayama
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Takeshi Kawashima
- Department of GeneticsThe Graduate University for Advanced Studies, SOKENDAIMishimaShizuokaJapan
- National Institute of GeneticsMishimaShizuokaJapan
| | - Hiroshi Wada
- Institute of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Center for Artificial Intelligence ResearchUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
3
|
Sharma N, Haridy Y, Shubin N. Synovial joints were present in the common ancestor of jawed fish but lacking in jawless fish. PLoS Biol 2025; 23:e3002990. [PMID: 39999036 PMCID: PMC11856278 DOI: 10.1371/journal.pbio.3002990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025] Open
Abstract
Synovial joints, characterized by reciprocally congruent and lubricated articular surfaces separated by a cavity, can simultaneously provide mobility and load bearing. Here, we study the early evolution of synovial joints by examining the morphological, genetic, and molecular features required for the development and function of the joints in elasmobranchs and cyclostomes. We show the presence of cavitated and articulated joints in the skeleton of elasmobranchs, such as the little skate (Leucoraja erinacea) and bamboo shark (Chiloscyllium plagiosum). However, our results do not support the presence of articular cavities between cartilaginous elements in cyclostomes such as sea lampreys (Petromyozon marinus) and hagfish (Myxine glutinosa). Immunostaining reveals the expression of lubrication-related proteoglycans like aggrecan and glycoproteins such as hyaluronic acid receptor (CD44) at the articular surfaces in little skates. Analysis of joint development in little skate embryos shows the expression of growth differentiation factor-5 (Gdf5) and β-catenin at the joint interzones like tetrapods. Muscle paralysis in little skate embryos leads to joint fusion, suggesting that muscle activity is necessary for the formation of synovial cavity and development of normal articular surfaces, in a manner similar to zebrafish and tetrapods. Together, these data suggest that synovial joints originated in the common ancestor of extant gnathostomes. A review of fossils from the extinct clades along the gnathostome stem suggests that joints with reciprocally articulating surfaces arose in the dermal skeleton of the common ancestor of all jawed vertebrates. Synovial joints in cartilaginous tissue were a subsequent gnathostome innovation.
Collapse
Affiliation(s)
- Neelima Sharma
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| | - Yara Haridy
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Kariyayama H, Gogoleva N, Harada K, Yokoyama H, Ono H, Suzuki DG, Yamazaki Y, Wada H. Development of the vertebra and fin skeleton in the lamprey and its implications for the homology of vertebrate vertebrae. Dev Dyn 2024; 253:283-295. [PMID: 37732630 DOI: 10.1002/dvdy.657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Although vertebrae are the defining character of vertebrates, they are found only in rudimentary form in extant agnathans. In addition, the vertebrae of agnathans possess several unique features, such as elastin-like molecules as the main matrix component and late (post-metamorphosis) differentiation of lamprey vertebrae. In this study, by tracing the developmental process of vertebrae in lamprey, we examined the homology of vertebrae between lampreys and gnathostomes. RESULTS We found that the lamprey somite is first subdivided mediolaterally, with myotome cells differentiating medially and non-myotome cells emerging laterally. Subsequently, collagen-positive non-myotome cells surround the myotome. This pattern of somitogenesis is rather similar to that in amphioxi and sheds doubt on the presence of a sclerotome, in terms of mesenchyme cells induced by a signal from the notochord, in lamprey. Further tracing of non-myotome cell development revealed that fin cartilage develops in ammocoete larvae approximately 35 mm in body length. The development of the fin cartilage occurs much earlier than that of the vertebra whose development proceeds during metamorphosis. CONCLUSION We propose that the homology of vertebrae between agnathans and gnathostomes should be discussed carefully, because the developmental process of the lamprey vertebra is different from that of gnathostomes.
Collapse
Affiliation(s)
- Hirofumi Kariyayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Natalia Gogoleva
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keishi Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Yokoyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daichi G Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Yamazaki
- Faculty of Science, Department of Biology, University of Toyama, Toyama, Japan
| | - Hiroshi Wada
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Root ZD, Jandzik D, Gould C, Allen C, Brewer M, Medeiros DM. Cartilage diversification and modularity drove the evolution of the ancestral vertebrate head skeleton. EvoDevo 2023; 14:8. [PMID: 37147719 PMCID: PMC10161429 DOI: 10.1186/s13227-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
The vertebrate head skeleton has evolved a myriad of forms since their divergence from invertebrate chordates. The connection between novel gene expression and cell types is therefore of importance in this process. The transformation of the jawed vertebrate (gnathostome) head skeleton from oral cirri to jointed jaw elements required a diversity of cartilages as well as changes in the patterning of these tissues. Although lampreys are a sister clade to gnathostomes, they display skeletal diversity with distinct gene expression and histologies, a useful model for addressing joint evolution. Specifically, the lamprey tissue known as mucocartilage has noted similarities with the jointed elements of the mandibular arch in jawed vertebrates. We thus asked whether the cells in lamprey mucocartilage and gnathostome joint tissue could be considered homologous. To do this, we characterized new genes that are involved in gnathostome joint formation and characterized the histochemical properties of lamprey skeletal types. We find that most of these genes are minimally found in mucocartilage and are likely later innovations, but we do identify new activity for gdf5/6/7b in both hyaline and mucocartilage, supporting its role as a chondrogenic regulator. Contrary to previous works, our histological assays do not find any perichondrial fibroblasts surrounding mucocartilage, suggesting that mucocartilage is non-skeletogenic tissue that is partially chondrified. Interestingly, we also identify new histochemical features of the lamprey otic capsule that diverge from normal hyaline. Paired with our new insights into lamprey mucocartilage, we propose a broader framework for skeletal evolution in which an ancestral soxD/E and gdf5/6/7 network directs mesenchyme along a spectrum of cartilage-like features.
Collapse
Affiliation(s)
- Zachary D. Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
- Department of Zoology, Comenius University in Bratislava, Bratislava, 84215 Slovakia
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Daniel M. Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
6
|
Zhang G, Jin LQ, Rodemer W, Hu J, Root ZD, Medeiros DM, Selzer ME. The Composition and Cellular Sources of CSPGs in the Glial Scar After Spinal Cord Injury in the Lamprey. Front Mol Neurosci 2022; 15:918871. [PMID: 35832392 PMCID: PMC9271930 DOI: 10.3389/fnmol.2022.918871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Axon regrowth after spinal cord injury (SCI) is inhibited by several types of inhibitory extracellular molecules in the central nervous system (CNS), including chondroitin sulfate proteoglycans (CSPGs), which also are components of perineuronal nets (PNNs). The axons of lampreys regenerate following SCI, even though their spinal cords contain CSPGs, and their neurons are enwrapped by PNNs. Previously, we showed that by 2 weeks after spinal cord transection in the lamprey, expression of CSPGs increased in the lesion site, and thereafter, decreased to pre-injury levels by 10 weeks. Enzymatic digestion of CSPGs in the lesion site with chondroitinase ABC (ChABC) enhanced axonal regeneration after SCI and reduced retrograde neuronal death. Lecticans (aggrecan, versican, neurocan, and brevican) are the major CSPG family in the CNS. Previously, we cloned a cDNA fragment that lies in the most conserved link-domain of the lamprey lecticans and found that lectican mRNAs are expressed widely in lamprey glia and neurons. Because of the lack of strict one-to-one orthology with the jawed vertebrate lecticans, the four lamprey lecticans were named simply A, B, C, and D. Using probes that distinguish these four lecticans, we now show that they all are expressed in glia and neurons but at different levels. Expression levels are relatively high in embryonic and early larval stages, gradually decrease, and are upregulated again in adults. Reductions of lecticans B and D are greater than those of A and C. Levels of mRNAs for lecticans B and D increased dramatically after SCI. Lectican D remained upregulated for at least 10 weeks. Multiple cells, including glia, neurons, ependymal cells and microglia/macrophages, expressed lectican mRNAs in the peripheral zone and lesion center after SCI. Thus, as in mammals, lamprey lecticans may be involved in axon guidance and neuroplasticity early in development. Moreover, neurons, glia, ependymal cells, and microglia/macrophages, are responsible for the increase in CSPGs during the formation of the glial scar after SCI.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Li-Qing Jin
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Zachary D. Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Daniel M. Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
- Department of Neurology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- *Correspondence: Michael E. Selzer
| |
Collapse
|
7
|
Root ZD, Allen C, Gould C, Brewer M, Jandzik D, Medeiros DM. A Comprehensive Analysis of Fibrillar Collagens in Lamprey Suggests a Conserved Role in Vertebrate Musculoskeletal Evolution. Front Cell Dev Biol 2022; 10:809979. [PMID: 35242758 PMCID: PMC8887668 DOI: 10.3389/fcell.2022.809979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.
Collapse
Affiliation(s)
- Zachary D Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.,Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|