1
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
2
|
Robson CD. Conductive Hearing Loss in Children. Neuroimaging Clin N Am 2023; 33:543-562. [PMID: 37741657 DOI: 10.1016/j.nic.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
A variety of congenital and acquired disorders result in pediatric conductive hearing loss. Malformations of the external auditory canal are invariably associated with malformations of the middle ear space and ossicles. Isolated ossicular malformations are uncommon. Syndromes associated with external and middle ear malformations are frequently associated with abnormal development of first and second pharyngeal arch derivatives. Chronic inflammatory disorders include cholesteatoma, cholesterol granuloma, and tympanosclerosis.
Collapse
Affiliation(s)
- Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Luo S, Sun H, Bian Q, Liu Z, Wang X. The etiology, clinical features, and treatment options of hemifacial microsomia. Oral Dis 2023; 29:2449-2462. [PMID: 36648381 DOI: 10.1111/odi.14508] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The second most frequent craniomaxillofacial congenital deformity is hemifacial microsomia (HFM). Patients often accompany short mandible, ear dysplasia, facial nerve, and soft tissue dysplasia. The etiology of HFM is not fully understood. To organize the possible up-to-date information on the etiology, craniofacial phenotypes, and therapeutic alternatives in order to fully comprehend the HFM. Reviewing the potential causes, exploring the clinical features of HFM and summarizing the available treatment options. Vascular malformation, Meckel's cartilage abnormalities, and cranial neural crest cells (CNCCs) abnormalities are three potential etiology hypotheses. The commonly used clinical classification for HFM is OMENS, OMENS-plus, and SAT. Other craniofacial anomalies, like dental defects, and zygomatic deformities, are still not precisely documented in the classification. Patients with moderate phenotypes may not need any treatment from infancy through adulthood. However, patients with severe HFM require to undergo multiple surgeries to address facial asymmetries, such as mandibular distraction osteogenesis (MDO), autologous costochondral rib graft (CCG), orthodontic and orthognathic treatment, and facial soft tissue reconstruction. It is anticipated that etiology research will examine the pathogenic mechanism of HFM. A precise treatment for HFM may be possible with thoroughly documented phenotypes and a pathogenic diagnosis.
Collapse
Affiliation(s)
- Songyuan Luo
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Sun
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Zhixu Liu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Kim KS, Koo HY, Bok J. Alternative splicing in shaping the molecular landscape of the cochlea. Front Cell Dev Biol 2023; 11:1143428. [PMID: 36936679 PMCID: PMC10018040 DOI: 10.3389/fcell.2023.1143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The cochlea is a complex organ comprising diverse cell types with highly specialized morphology and function. Until now, the molecular underpinnings of its specializations have mostly been studied from a transcriptional perspective, but accumulating evidence points to post-transcriptional regulation as a major source of molecular diversity. Alternative splicing is one of the most prevalent and well-characterized post-transcriptional regulatory mechanisms. Many molecules important for hearing, such as cadherin 23 or harmonin, undergo alternative splicing to produce functionally distinct isoforms. Some isoforms are expressed specifically in the cochlea, while some show differential expression across the various cochlear cell types and anatomical regions. Clinical phenotypes that arise from mutations affecting specific splice variants testify to the functional relevance of these isoforms. All these clues point to an essential role for alternative splicing in shaping the unique molecular landscape of the cochlea. Although the regulatory mechanisms controlling alternative splicing in the cochlea are poorly characterized, there are animal models with defective splicing regulators that demonstrate the importance of RNA-binding proteins in maintaining cochlear function and cell survival. Recent technological breakthroughs offer exciting prospects for overcoming some of the long-standing hurdles that have complicated the analysis of alternative splicing in the cochlea. Efforts toward this end will help clarify how the remarkable diversity of the cochlear transcriptome is both established and maintained.
Collapse
Affiliation(s)
- Kwan Soo Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jinwoong Bok,
| |
Collapse
|
5
|
Emerging Roles of RNA-Binding Proteins in Inner Ear Hair Cell Development and Regeneration. Int J Mol Sci 2022; 23:ijms232012393. [PMID: 36293251 PMCID: PMC9604452 DOI: 10.3390/ijms232012393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level. They play major roles in the tissue- and stage-specific expression of protein isoforms as well as in the maintenance of protein homeostasis. The inner ear is a bi-functional organ, with the cochlea and the vestibular system required for hearing and for maintaining balance, respectively. It is relatively well documented that transcription factors and signaling pathways are critically involved in the formation of inner ear structures and in the development of hair cells. Accumulating evidence highlights emerging functions of RBPs in the post-transcriptional regulation of inner ear development and hair cell function. Importantly, mutations of splicing factors of the RBP family and defective alternative splicing, which result in inappropriate expression of protein isoforms, lead to deafness in both animal models and humans. Because RBPs are critical regulators of cell proliferation and differentiation, they present the potential to promote hair cell regeneration following noise- or ototoxin-induced damage through mitotic and non-mitotic mechanisms. Therefore, deciphering RBP-regulated events during inner ear development and hair cell regeneration can help define therapeutic strategies for treatment of hearing loss. In this review, we outline our evolving understanding of the implications of RBPs in hair cell formation and hearing disease with the aim of promoting future research in this field.
Collapse
|
6
|
The Core Splicing Factors EFTUD2, SNRPB and TXNL4A Are Essential for Neural Crest and Craniofacial Development. J Dev Biol 2022; 10:jdb10030029. [PMID: 35893124 PMCID: PMC9326569 DOI: 10.3390/jdb10030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mandibulofacial dysostosis (MFD) is a human congenital disorder characterized by hypoplastic neural-crest-derived craniofacial bones often associated with outer and middle ear defects. There is growing evidence that mutations in components of the spliceosome are a major cause for MFD. Genetic variants affecting the function of several core splicing factors, namely SF3B4, SF3B2, EFTUD2, SNRPB and TXNL4A, are responsible for MFD in five related but distinct syndromes known as Nager and Rodriguez syndromes (NRS), craniofacial microsomia (CFM), mandibulofacial dysostosis with microcephaly (MFDM), cerebro-costo-mandibular syndrome (CCMS) and Burn–McKeown syndrome (BMKS), respectively. Animal models of NRS and MFDM indicate that MFD results from an early depletion of neural crest progenitors through a mechanism that involves apoptosis. Here we characterize the knockdown phenotype of Eftud2, Snrpb and Txnl4a in Xenopus embryos at different stages of neural crest and craniofacial development. Our results point to defects in cranial neural crest cell formation as the likely culprit for MFD associated with EFTUD2, SNRPB and TXNL4A haploinsufficiency, and suggest a commonality in the etiology of these craniofacial spliceosomopathies.
Collapse
|
7
|
Ulhaq ZS, Soraya GV, Istifiani LA, Pamungkas SA, Tse WKF. SF3B4 Frameshift Variants Represented a More Severe Clinical Manifestation in Nager Syndrome. Cleft Palate Craniofac J 2022:10556656221089156. [PMID: 35331022 DOI: 10.1177/10556656221089156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nager syndrome (NS) is a rare disease marked with craniofacial and preaxial limb anomalies. In this report, we summarized the current evidence to determine a possible genotype-phenotype association among NS individuals. Twenty-four articles comprising of 84 NS (including 9 patients with a severe form of NS [Rodriguez syndrome]) patients were examined, of which 76% were caused by variants in SF3B4 (OMIM *605593, Splicing Factor 3B, Subunit 4). Within the SF3B4 gene, variants located in exon 3 commonly occurred (20%) from a total identified variant, while hotspot location was identified in exon 1 (12%), and primarily occurred as frameshift variants (64%). Thirty-five distinct pathogenic variants within SF3B4 gene were identified with two common sites, c.1A > G and c.1060dupC in exons 1 and 5, respectively. Although no significant genotype-phenotype association was found, it is notable that patients with frameshift SF3B4 variants and predicted to lead to nonsense-mediated RNA decay (NMD) of the transcripts tended to have a more severe clinical manifestation. Additionally, patients harboring variants in exons 2 and 3 displayed a higher proportion of cardiac malformations. Taken together, this article summarizes the pathogenic variants observed in SF3B4 and provides a possible genotype-phenotype relationship in this disease.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- National Research and Innovation Agency, Republic of Indonesia, Jakarta, Indonesia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Li B. Hearing loss classification via AlexNet and extreme learning machine. INTERNATIONAL JOURNAL OF COGNITIVE COMPUTING IN ENGINEERING 2021; 2:144-153. [DOI: 10.1016/j.ijcce.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|