1
|
Kowalski WJ, Vatti S, Sakamoto T, Li W, Odutola SR, Liu C, Chen G, Boehm M, Mukouyama YS. In vivo transplantation of mammalian vascular organoids onto the chick chorioallantoic membrane reveals the formation of a hierarchical vascular network. Sci Rep 2025; 15:7150. [PMID: 40021912 PMCID: PMC11871353 DOI: 10.1038/s41598-025-91826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
The dynamic remodeling of the nascent vascular network into a mature hierarchy is essential for embryo survival. Cell behaviors and signaling mechanisms are often investigated with animal models and perfused microchannels, giving insights into this process. To support these studies and enrich our understanding, we demonstrate a complementary approach using vascular organoids. Organoids initially form a primitive endothelial plexus lined with NG2+/PDGFRβ+ mural cell progenitors containing immature pericytes, but there is no formation of large-diameter vessels covered with αSMA+ cells containing immature vascular smooth muscle cells (vSMCs). After transplantation to the chick chorioallantoic membrane, the network reorganizes into a branched architecture with large-diameter vessels covered by αSMA+ cells. We additionally show that blood flow from the host circulation perfuses the organoid. Compared with the developing skin vasculature in mouse embryos, organoids successfully recapitulate vascular morphogenesis, both in vitro and after transplantation. The model described here presents a further approach to enhance the study of vascular remodeling.
Collapse
Affiliation(s)
- William J Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shravani Vatti
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tyler Sakamoto
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Rose Odutola
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Zhang S, Tong M, Li S, Zhang B, Zhang W, Wang R, Dong Z, Huang Y. The Role of Microvascular Variations in the Process of Intervertebral Disk Degeneration and Its Regulatory Mechanisms: A Literature Review. Orthop Surg 2024; 16:2587-2597. [PMID: 39205477 PMCID: PMC11541140 DOI: 10.1111/os.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Microvascular changes are considered key factors in the process of intervertebral disk degeneration (IDD). Microvascular invasion and growth into the nucleus pulposus (NP) and cartilaginous endplates are unfavorable factors that trigger IDD. In contrast, the rich distribution of microvessels in the bony endplates and outer layers of the annulus fibrosus is an important safeguard for the nutrient supply and metabolism of the intervertebral disk (IVD). In particular, the adequate supply of microvessels in the bony endplates is the main source of the nutritional supply for the entire IVD. Microvessels can affect the progression of IDD through a variety of pathways. Many studies have explored the effects of microvessel alterations in the NP, annulus fibrosus, cartilaginous endplates, and bony endplates on the local microenvironment through inflammation, apoptosis, and senescence. Studies also elucidated the important roles of microvessel alterations in the process of IDD, as well as conducted in-depth explorations of cytokines and biologics that can inhibit or promote the ingrowth of microvessels. Therefore, the present manuscript reviews the published literature on the effects of microvascular changes on IVD to summarize the roles of microvessels in IVD and elaborate on the mechanisms of action that promote or inhibit de novo microvessel formation in IVD.
Collapse
Affiliation(s)
- Si‐Ping Zhang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Min Tong
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Shi‐Da Li
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Bin Zhang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Wenhao Zhang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Rong Wang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Zhen‐Yu Dong
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| | - Yi‐Fei Huang
- Department of Spinal SurgeryTraditional Chinese Medicine Hospital affiliated to Xinjiang Medical UniversityUrumqiChina
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese MedicineUrumqiChina
| |
Collapse
|
3
|
Limbu S, McCloskey KE. An Endothelial Cell Is Not Simply an Endothelial Cell. Stem Cells Dev 2024; 33:517-527. [PMID: 39030822 PMCID: PMC11564855 DOI: 10.1089/scd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024] Open
Abstract
Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.
Collapse
Affiliation(s)
- Shiwani Limbu
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
| | - Kara E. McCloskey
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
4
|
Vallecillo-García P, Kühnlein MN, Orgeur M, Hansmeier NR, Kotsaris G, Meisen ZG, Timmermann B, Giesecke-Thiel C, Hägerling R, Stricker S. Mesenchymal Osr1+ cells regulate embryonic lymphatic vessel formation. Development 2024; 151:dev202747. [PMID: 39221968 PMCID: PMC11441984 DOI: 10.1242/dev.202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.
Collapse
Affiliation(s)
- Pedro Vallecillo-García
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353Berlin, Germany
| | - Mira Nicola Kühnlein
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Mickael Orgeur
- Unit for Integrated Mycobacterial Pathogenomics,Institut Pasteur, Université Paris Cité, CNRS UMR 6047, 75015 Paris, France
| | - Nils Rouven Hansmeier
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georgios Kotsaris
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Zarah Gertrud Meisen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - René Hägerling
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Charitéplatz 1, 10117 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| |
Collapse
|
5
|
Duval C, Bourreau E, Warrick E, Bastien P, Nouveau S, Bernerd F. A chronic pro-inflammatory environment contributes to the physiopathology of actinic lentigines. Sci Rep 2024; 14:5256. [PMID: 38438410 PMCID: PMC10912228 DOI: 10.1038/s41598-024-53990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Actinic lentigines (AL) or age spots, are skin hyperpigmented lesions associated with age and chronic sun exposure. To better understand the physiopathology of AL, we have characterized the inflammation response in AL of European and Japanese volunteers. Gene expression profile showed that in both populations, 10% of the modulated genes in AL versus adjacent non lesional skin (NL), i.e. 31 genes, are associated with inflammation/immune process. A pro-inflammatory environment in AL is strongly suggested by the activation of the arachidonic acid cascade and the plasmin pathway leading to prostaglandin production, along with the decrease of anti-inflammatory cytokines and the identification of inflammatory upstream regulators. Furthermore, in line with the over-expression of genes associated with the recruitment and activation of immune cells, immunostaining on skin sections revealed a significant infiltration of CD68+ macrophages and CD4+ T-cells in the dermis of AL. Strikingly, investigation of infiltrated macrophage subsets evidenced a significant increase of pro-inflammatory CD80+/CD68+ M1 macrophages in AL compared to NL. In conclusion, a chronic inflammation, sustained by pro-inflammatory mediators and infiltration of immune cells, particularly pro-inflammatory M1 macrophages, takes place in AL. This pro-inflammatory loop should be thus broken to normalize skin and improve the efficacy of age spot treatment.
Collapse
Affiliation(s)
| | | | - Emilie Warrick
- L'Oréal Research and Innovation, Aulnay Sous Bois, France
| | | | | | | |
Collapse
|
6
|
Shi L, Song H, Zhou B, Morrow BE. Crk/Crkl regulates early angiogenesis in mouse embryos by accelerating endothelial cell maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548782. [PMID: 37503032 PMCID: PMC10369973 DOI: 10.1101/2023.07.12.548782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Rationale Ubiquitously expressed cytoplasmic adaptors CRK and CRKL mediate multiple signaling pathways in mammalian embryogenesis. They are also associated with cardiovascular defects occurring in Miller-Dieker syndrome and 22q11.2 deletion syndrome, respectively. The embryonic mesoderm contributes to the formation of the cardiovascular system, yet the roles that Crk and Crkl play there are not understood on a single cell level. Objectives To determine functions of Crk and Crkl in the embryonic mesoderm during early mouse vascular development. Secondly, we will examine the molecular mechanisms responsible for early embryonic endothelial cell (EC) defects by performing single cell RNA-sequencing (scRNA-seq) and in vivo validation experiments. Methods and Results Inactivation of both Crk and Crkl together using Mesp1 Cre resulted embryonic lethality with severe vascular defects. Although vasculogenesis appeared normal, angiogenesis was disrupted both in the yolk sac and embryo proper, leading to disorganized vascular networks. We performed scRNA-seq of the Mesp1 Cre mesodermal lineage and found that there was upregulation of a great number of angiogenesis and cell migration related genes in ECs in the mutants, including NOTCH signaling genes such as Dll4 and Hey1 . Further bioinformatic analysis of EC subpopulations identified a relative increase in the number of more differentiated angiogenic ECs and decrease in EC progenitors. Consistent with this, we identified an expansion of Dll4 expressing cells within abnormal arteries, in vivo . Also, our bioinformatic data indicates that there is dysregulated expression of lineage genes that promote EC differentiation causing accelerated cell fate progression during EC differentiation. Conclusions Our results show that Crk and Crkl are crucial for regulating early embryonic angiogenesis. Combined inactivation of Crk/Crkl caused precocious EC maturation with an increase of atypical differentiated angiogenic ECs and failed vascular remodeling. This is in part due to increased NOTCH signaling and altered expression of cell migration genes.
Collapse
|
7
|
He W, Chen P, Chen Q, Cai Z, Zhang P. Cytokine storm: behind the scenes of the collateral circulation after acute myocardial infarction. Inflamm Res 2022; 71:1143-1158. [PMID: 35876879 PMCID: PMC9309601 DOI: 10.1007/s00011-022-01611-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
At least 17 million people die from acute myocardial infarction (AMI) every year, ranking it first among causes of death of human beings, and its incidence is gradually increasing. Typical characteristics of AMI include acute onset and poor prognosis. At present, there is no satisfactory treatment, but development of coronary collateral circulation (CCC) can be key to improving prognosis. Recent research indicates that the levels of cytokines, including those related to promoting inflammatory responses and angiogenesis, increase after the onset of AMI. In the early phase of AMI, cytokines play a vital role in inducing development of collateral circulation. However, when myocardial infarction is decompensated, cytokine secretion increases greatly, which may induce a cytokine storm and worsen prognosis. Cytokines can regulate the activation of a variety of signal pathways and form a complex network, which may promote or inhibit the establishment of collateral circulation. We searched for published articles in PubMed and Google Scholar, employing the keyword "acute myocardial infarction", "coronary collateral circulation" and "cytokine storm", to clarify the relationship between AMI and a cytokine storm, and how a cytokine storm affects the growth of collateral circulation after AMI, so as to explore treatment methods based on cytokine agents or inhibitors used to improve prognosis of AMI.
Collapse
Affiliation(s)
- Weixin He
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Peixian Chen
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Qingquan Chen
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zongtong Cai
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Bautch VL, Mukouyama YS. The Beauty and Complexity of Blood Vessel Patterning. Cold Spring Harb Perspect Med 2022; 12:a041167. [PMID: 35379659 PMCID: PMC9619359 DOI: 10.1101/cshperspect.a041167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review highlights new concepts in vascular patterning in the last 10 years, with emphasis on its beauty and complexity. Endothelial cell signaling pathways that respond to molecular or mechanical signals are described, and examples of vascular patterning that use these pathways in brain, skin, heart, and kidney are highlighted. The pathological consequences of patterning loss are discussed in the context of arteriovenous malformations (AVMs), and prospects for the next 10 years presented.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Ma X, Wang Y, Wu P, Kang M, Hong Y, Xue Y, Chen C, Li H, Fang Y. Case Report: A Novel CXCR4 Mutation in a Chinese Child With Kawasaki Disease Causing WHIM Syndrome. Front Immunol 2022; 13:857527. [PMID: 35493524 PMCID: PMC9043559 DOI: 10.3389/fimmu.2022.857527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
WHIM syndrome, an extremely rare congenital disease with combined immunodeficiency, is mainly caused by heterozygous gain-of-function mutation in the CXCR4 gene. There have been no previous case reports of WHIM syndrome with Kawasaki disease. We herein report a case of a boy who developed Kawasaki disease at the age of 1 year. After treatment, the number of neutrophils in his peripheral blood decreased continuously. His medical history revealed that he had been suffering from leukopenia, neutropenia and low immunoglobulin since birth, and his neutrophils could return to the normal level in the presence of infection or inflammation. Clinical targeted gene sequencing of 91 genes associated with granulocyte-related disease revealed that the patient had a novel heterozygous NM_003467; c.1032_1033delTG;p.(E345Vfs*12) variant in exon 2 of CXCR4 gene. Family verification analysis by Sanger sequencing showed that his father also had heterozygous variation at this site, while other family members did not. The computer prediction software indicated that the variation had a high pathogenicity. The computational structure analysis of the mutant revealed significant structural and functional changes in the CXCR4 protein. It should be noted that when unexplained persistent neutropenia with low immunoglobulin occurs after birth, especially when there is a family history of neutropenia, immunodeficiency should be investigated with genetic testing.
Collapse
Affiliation(s)
- Xiaopeng Ma
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yaping Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Peng Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Chuqin Chen
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Huimin Li
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| |
Collapse
|