1
|
Mastromoro G, Guadagnolo D, Gianno F, Khaleghi Hashemian N, Terracciano A, Bernardini L, Giancotti A, Novelli A, Piacentini G, Di Gioia C, Pizzuti A. Cardiac Involvement and TBCK -Related Neurodevelopmental Disorder: Is It a New Feature of This Condition? Am J Med Genet A 2025; 197:e64001. [PMID: 39865381 DOI: 10.1002/ajmg.a.64001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations. The parents, a consanguineous couple of first cousins, were referred to schedule invasive diagnosis for their sixth pregnancy. They were known to carry the pathogenic c.1532G>A TBCK variant. The variant was originally identified in homozygosity in the first and second children of the couple, both affected. One also presented a right-sided aortic arch. The other had Tetralogy of Fallot. Present pregnancy ultrasound revealed cystic hygroma and hypoplastic nasal bone, not previously reported in this condition. Chromosomal microarray analysis found no imbalance and identified 8.6% runs of homozygosity. Whole exome sequencing confirmed the TBCK variant without additional pathogenic or candidate variants. Fetal echocardiography revealed left ventricle and aortic arch hypoplasia. The couple opted for pregnancy termination. Fetopsy confirmed sonographic findings and revealed a hypoplastic aorta arising from right ventricle and corpus callosum agenesis. Interestingly, the cardiac phenotype segregates with variants and cardiac involvement might be considered a new feature of this variant causing Hypotonia, infantile, with psychomotor retardation and characteristic facies 3.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | | | - Alessandra Terracciano
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Bernardini
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonella Giancotti
- Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gerardo Piacentini
- Fetal and Neonatal Cardiology Unit, Isola Tiberina Hospital - Gemelli Isola, Roma, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Ahern DT, Bansal P, Faustino IV, Chambers OM, Banda EC, Glatt-Deeley HR, Massey RE, Kondaveeti Y, Pinter SF. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network. Am J Hum Genet 2025; 112:615-629. [PMID: 39922196 PMCID: PMC11947172 DOI: 10.1016/j.ajhg.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Viable human aneuploidy can be challenging to model in rodents due to syntenic boundaries or primate-specific biology. Human monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in X-monosomic mice. To learn how monosomy-X may impact embryonic development, we turned to 45,X and isogenic euploid human induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because the neural crest (NC) is hypothesized to give rise to craniofacial and cardiovascular changes in TS, we assessed differential expression of hiPSC-derived anterior NC cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers and disrupted expression of other NCC-specific genes relative to isogenic euploid controls. Additionally, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts with 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal and nuclear-encoded mitochondrial proteins. Such metabolic pathways are also over-represented in weighted co-expression modules that are preserved in monogenic neurocristopathy and reflect 28% of all TS-associated terms of the human phenotype ontology. We demonstrate that 45,X NCCs reduce protein synthesis despite activation of mammalian target of rapamycin (mTOR) but are partially rescued by mild mTOR suppression. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as powerful models of early NC development in TS and inform new hypotheses toward its etiology.
Collapse
Affiliation(s)
- Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Isaac V Faustino
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Owen M Chambers
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
3
|
Kibalnyk Y, Afanasiev E, Noble RMN, Watson AES, Poverennaya I, Dittmann NL, Alexiou M, Goodkey K, Greenwell AA, Ussher JR, Adameyko I, Massey J, Graf D, Bourque SL, Stratton JA, Voronova A. The chromatin regulator Ankrd11 controls cardiac neural crest cell-mediated outflow tract remodeling and heart function. Nat Commun 2024; 15:4632. [PMID: 38951500 PMCID: PMC11217281 DOI: 10.1038/s41467-024-48955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-β in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.
Collapse
Affiliation(s)
- Yana Kibalnyk
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Irina Poverennaya
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Maria Alexiou
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Amanda A Greenwell
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Edmonton, AB, T6G 2H1, Canada
| | - John R Ussher
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | - Daniel Graf
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Stephane L Bourque
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Women and Children's Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada.
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
4
|
Tucker SK, Ghosal R, Swartz ME, Zhang S, Eberhart JK. Zebrafish raptor mutation inhibits the activity of mTORC1, inducing craniofacial defects due to autophagy-induced neural crest cell death. Development 2024; 151:dev202216. [PMID: 38512806 PMCID: PMC11006402 DOI: 10.1242/dev.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.
Collapse
Affiliation(s)
- Scott K. Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Ritika Ghosal
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Mary E. Swartz
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Stephanie Zhang
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Johann K. Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| |
Collapse
|