1
|
Echevarría-Andino ML, Song JY, van Ginkel P, Chen S, Flynn CGK, Keles S, Allen BL, Wellik DM. Generation of Hoxa11-3XFLAG and Hoxd11-3XFLAG alleles to investigate Hox11 genome-wide binding. Dev Biol 2025:S0012-1606(25)00136-8. [PMID: 40389054 DOI: 10.1016/j.ydbio.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/13/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
Hox genes encode for evolutionary conserved transcription factors that direct the proper development of the body plan. Despite decades of research, little is known regarding their downstream target genes, especially in vertebrates. The strong evolutionary conservation of their DNA-binding homeodomain, their generic AT-rich binding sites, and the lack of specific antibodies has precluded rigorous examination. To circumvent these limitations, we have generated two mouse models in which a 3XFLAG epitope tag has been inserted into the 5' end of the coding sequence of both Hoxa11 and Hoxd11 loci via Cas9/CRISPR. The alleles have been validated by sequencing, PCR genotyping, western blotting, and protein expression analyses, demonstrating proper targeting and expression. Breeding these alleles in combination produces viable and fertile Hoxa11FLAG/FLAG; Hoxd11FLAG/FLAG animals, with no overt patterning defects unlike Hoxa11/Hoxd11 mutants that are infertile and have severe kidney and limb defects. By performing CUT&RUN and CUT&Tag analyses, we have confirmed DNA binding to a known Six2 enhancer in the developing kidney. These novel alleles will allow characterization of the genome-wide binding profile of HoxPG11 proteins in vivo.
Collapse
Affiliation(s)
- Martha L Echevarría-Andino
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Jane Y Song
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Paul van Ginkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Shuyang Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Corey G K Flynn
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Wang Y, Gao J, Ren Z, Shen Z, Gu W, Miao Q, Hu X, Wu Y, Liu W, Jia J, Cai Y, Wan C(C, Sun L, Yan T. A pan-cancer analysis of homeobox family: expression characteristics and latent significance in prognosis and immune microenvironment. Front Oncol 2025; 15:1521652. [PMID: 39980564 PMCID: PMC11840236 DOI: 10.3389/fonc.2025.1521652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Background The Homeobox (HOX) gene family are conserved transcription factors that are essential for embryonic development, oncogenesis, and cancer suppression in biological beings. Abnormally expressed HOX genes in cancers are directly associated with prognosis. Methods Public databases such as TCGA and the R language were used to perform pan-cancer analyses of the HOX family in terms of expression, prognosis, and immune microenvironment. The HOX score was defined, and potential target compounds in cancers were predicted by Connective Map. Immunohistochemistry was employed to validate protein expression levels. Gene knockdowns were used to verify the effects of HOXB7 and HOXC6 on the proliferation and migration of lung adenocarcinoma (LUAD) cells. Results HOX genes play different roles in different cancers. Many HOX genes, especially HOXB7 and HOXC6, have higher expression and lower overall survival in specific cancers and are predicted as risk factors. The high expression of most HOX genes is mainly related to immune subtypes C1-C4 and C6. Potential anti-tumor compounds for down-regulating HOX gene expression were identified, such as HDAC inhibitors and tubulin inhibitors. LUAD Cell migration and proliferation were inhibited when HOXB7 or HOXC6 was knocked down. Conclusions Many HOX genes may act as both oncogenes and tumor suppressor genes, necessitating precision medicine based on specific cancers. The HOX gene family plays a crucial role in the development of certain cancers, and their expression patterns are closely related to cancer prognosis and the tumor microenvironment (TME), which may affect cancer prognosis and response to immunotherapy. Compounds that are negatively correlated with the expression levels of the HOX family in various cancers, such as HDAC inhibitors, are potential anti-cancer drugs. HOXB7 and HOXC6 may serve as potential targets for cancer treatment and the development of targeted compounds in the future.
Collapse
Affiliation(s)
- Yuanhui Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Gu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
| | - Qinyi Miao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration (NMPA) Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine&Nursing, Huzhou University, Huzhou, China
| |
Collapse
|
3
|
Kim DJ. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr Oncol 2025; 32:88. [PMID: 39996888 PMCID: PMC11854558 DOI: 10.3390/curroncol32020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Members of the DNA methyltransferase (DNMT) family have been recognized as major epigenetic regulators of altered gene expression during tumor development. They establish and maintain DNA methylation of the CpG island of promoter and non-CpG region of the genome. The abnormal methylation status of tumor suppressor genes (TSGs) has been associated with tumorigenesis, leading to genomic instability, improper gene silence, and immune evasion. DNMT1 helps preserve methylation patterns during DNA replication, whereas the DNMT3 family is responsible for de novo methylation, creating new methylation patterns. Altered DNA methylation significantly supports tumor growth by changing gene expression patterns. FDA-approved DNMT inhibitors reverse hypermethylation-induced gene repression and improve therapeutic outcomes for cancer. Recent studies indicate that combining DNMT inhibitors with chemotherapies and immunotherapies can have synergistic effects, especially in aggressive metastatic tumors. Improving the treatment schedules, increasing isoform specificity, reducing toxicity, and utilizing genome-wide analyses of CRISPR-based editing to create personalized epigenetic therapies tailored to individual patient needs are promising strategies for enhancing therapeutic outcomes. This review discusses the interaction between DNMT regulators and DNMT1, its binding partners, the connection between DNA methylation and tumors, how these processes contribute to tumor development, and DNMT inhibitors' advancements and pharmacological properties.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology & Cancer Biology, The University of Virginia, Charlottesville, VA 20908, USA
| |
Collapse
|
4
|
Frenette B, Guéno J, Houde N, Landry-Truchon K, Giguère A, Ashok T, Ryckman A, Morton BR, Mansfield JH, Jeannotte L. Loss of Hoxa5 function affects Hox gene expression in different biological contexts. Sci Rep 2024; 14:30903. [PMID: 39730789 DOI: 10.1038/s41598-024-81867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors. However, Hox genes themselves appeared as potentially conserved targets of HOXA5 across tissues. Notably, a trend toward reduced expression of HoxA genes was observed in Hoxa5 null mutants in several tissue contexts. Comparative analysis of epigenetic marks along the HoxA cluster in lung tissue from two different Hoxa5 mutant mouse lines revealed limited effect of either mutation indicating that Hoxa5 gene targeting did not significantly perturb the chromatin landscape of the surrounding HoxA cluster. Combined with the shared impact of the two Hoxa5 mutant alleles on phenotype and Hox expression, these data argue against the contribution of local cis effects to Hoxa5 mutant phenotypes and support the notion that the HOXA5 protein acts in trans in the control of Hox gene expression.
Collapse
Affiliation(s)
- Béatrice Frenette
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
| | - Josselin Guéno
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Kim Landry-Truchon
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Anthony Giguère
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Theyjasvi Ashok
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Abigail Ryckman
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Brian R Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA.
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada.
| |
Collapse
|
5
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
6
|
Salomone J, Farrow E, Gebelein B. Homeodomain complex formation and biomolecular condensates in Hox gene regulation. Semin Cell Dev Biol 2024; 152-153:93-100. [PMID: 36517343 PMCID: PMC10258226 DOI: 10.1016/j.semcdb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Hox genes are a family of homeodomain transcription factors that regulate specialized morphological structures along the anterior-posterior axis of metazoans. Over the past few decades, researchers have focused on defining how Hox factors with similar in vitro DNA binding activities achieve sufficient target specificity to regulate distinct cell fates in vivo. In this review, we highlight how protein interactions with other transcription factors, many of which are also homeodomain proteins, result in the formation of transcription factor complexes with enhanced DNA binding specificity. These findings suggest that Hox-regulated enhancers utilize distinct combinations of homeodomain binding sites, many of which are low-affinity, to recruit specific Hox complexes. However, low-affinity sites can only yield reproducible responses with high transcription factor concentrations. To overcome this limitation, recent studies revealed how transcription factors, including Hox factors, use intrinsically disordered domains (IDRs) to form biomolecular condensates that increase protein concentrations. Moreover, Hox factors with altered IDRs have been associated with altered transcriptional activity and human disease states, demonstrating the importance of IDRs in mediating essential Hox output. Collectively, these studies highlight how Hox factors use their DNA binding domains, protein-protein interaction domains, and IDRs to form specific transcription factor complexes that yield accurate gene expression.
Collapse
Affiliation(s)
- Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward Farrow
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
7
|
Eggers N, Gkountromichos F, Krause S, Campos-Sparr A, Becker P. Physical interaction between MSL2 and CLAMP assures direct cooperativity and prevents competition at composite binding sites. Nucleic Acids Res 2023; 51:9039-9054. [PMID: 37602401 PMCID: PMC10516644 DOI: 10.1093/nar/gkad680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Silke Krause
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Peter B Becker
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| |
Collapse
|
8
|
Luo X, Xu YQ, Jin DC, Guo JJ, Yi TC. Role of the Hox Genes, Sex combs reduced, Fushi tarazu and Antennapedia, in Leg Development of the Spider Mite Tetranychus urticae. Int J Mol Sci 2023; 24:10391. [PMID: 37373537 DOI: 10.3390/ijms241210391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Mites, the second largest arthropod group, exhibit rich phenotypic diversity in the development of appendages (legs). For example, the fourth pair of legs (L4) does not form until the second postembryonic developmental stage, namely the protonymph stage. These leg developmental diversities drive body plan diversity in mites. However, little is known about the mechanisms of leg development in mites. Hox genes, homeotic genes, can regulate the development of appendages in arthropods. Three Hox genes, Sex combs reduced (Scr), Fushi tarazu (Ftz) and Antennapedia (Antp), have previously been shown to be expressed in the leg segments of mites. Here, the quantitative real-time reverse transcription PCR shows that three Hox genes are significantly increased in the first molt stage. RNA interference results in a set of abnormalities, including L3 curl and L4 loss. These results suggest that these Hox genes are required for normal leg development. Furthermore, the loss of single Hox genes results in downregulating the expression of the appendage marker Distal-less (Dll), suggesting that the three Hox genes can work together with Dll to maintain leg development in Tetranychus urticae. This study will be essential to understanding the diversity of leg development in mites and changes in Hox gene function.
Collapse
Affiliation(s)
- Xiang Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Yu-Qi Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Jian-Jun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| |
Collapse
|
9
|
Yang Q, Lo TW, Brejc K, Schartner C, Ralston EJ, Lapidus DM, Meyer BJ. X-chromosome target specificity diverged between dosage compensation mechanisms of two closely related Caenorhabditis species. eLife 2023; 12:e85413. [PMID: 36951246 PMCID: PMC10076027 DOI: 10.7554/elife.85413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species Caenorhabditis briggsae (Cbr) and Caenorhabditis elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13 bp MEX and 30 bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with the conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.
Collapse
Affiliation(s)
- Qiming Yang
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Te-Wen Lo
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katjuša Brejc
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Caitlin Schartner
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Edward J Ralston
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Denise M Lapidus
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Barbara J Meyer
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
10
|
Goslin K, Finocchio A, Wellmer F. Floral Homeotic Factors: A Question of Specificity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051128. [PMID: 36903987 PMCID: PMC10004826 DOI: 10.3390/plants12051128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
MADS-domain transcription factors are involved in the control of a multitude of processes in eukaryotes, and in plants, they play particularly important roles during reproductive development. Among the members of this large family of regulatory proteins are the floral organ identity factors, which specify the identities of the different types of floral organs in a combinatorial manner. Much has been learned over the past three decades about the function of these master regulators. For example, it has been shown that they have similar DNA-binding activities and that their genome-wide binding patterns exhibit large overlaps. At the same time, it appears that only a minority of binding events lead to changes in gene expression and that the different floral organ identity factors have distinct sets of target genes. Thus, binding of these transcription factors to the promoters of target genes alone may not be sufficient for their regulation. How these master regulators achieve specificity in a developmental context is currently not well understood. Here, we review what is known about their activities and highlight open questions that need to be addressed to gain more detailed insights into the molecular mechanisms underlying their functions. We discuss evidence for the involvement of cofactors as well as the results from studies on transcription factors in animals that may be instructive for a better understanding of how the floral organ identity factors achieve regulatory specificity.
Collapse
|
11
|
Kalis AK, Sterrett MC, Armstrong C, Ballmer A, Burkstrand K, Chilson E, Emlen E, Ferrer E, Loeb S, Olin T, Tran K, Wheeler A, Ross Wolff J. Hox proteins interact to pattern neuronal subtypes in Caenorhabditis elegans males. Genetics 2022; 220:iyac010. [PMID: 35137058 PMCID: PMC8982040 DOI: 10.1093/genetics/iyac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Hox transcription factors are conserved regulators of neuronal subtype specification on the anteroposterior axis in animals, with disruption of Hox gene expression leading to homeotic transformations of neuronal identities. We have taken advantage of an unusual mutation in the Caenorhabditis elegans Hox gene lin-39, lin-39(ccc16), which transforms neuronal fates in the C. elegans male ventral nerve cord in a manner that depends on a second Hox gene, mab-5. We have performed a genetic analysis centered around this homeotic allele of lin-39 in conjunction with reporters for neuronal target genes and protein interaction assays to explore how LIN-39 and MAB-5 exert both flexibility and specificity in target regulation. We identify cis-regulatory modules in neuronal reporters that are both region-specific and Hox-responsive. Using these reporters of neuronal subtype, we also find that the lin-39(ccc16) mutation disrupts neuronal fates specifically in the region where lin-39 and mab-5 are coexpressed, and that the protein encoded by lin-39(ccc16) is active only in the absence of mab-5. Moreover, the fates of neurons typical to the region of lin-39-mab-5 coexpression depend on both Hox genes. Our genetic analysis, along with evidence from Bimolecular Fluorescence Complementation protein interaction assays, supports a model in which LIN-39 and MAB-5 act at an array of cis-regulatory modules to cooperatively activate and to individually activate or repress neuronal gene expression, resulting in regionally specific neuronal fates.
Collapse
Affiliation(s)
- Andrea K Kalis
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Maria C Sterrett
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Cecily Armstrong
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | | | - Kylie Burkstrand
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Elizabeth Chilson
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Estee Emlen
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Emma Ferrer
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Seanna Loeb
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Taylor Olin
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Kevin Tran
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Andrew Wheeler
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | | |
Collapse
|
12
|
Bridoux L, Gofflot F, Rezsohazy R. HOX Protein Activity Regulation by Cellular Localization. J Dev Biol 2021; 9:jdb9040056. [PMID: 34940503 PMCID: PMC8707151 DOI: 10.3390/jdb9040056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
While the functions of HOX genes have been and remain extensively studied in distinct model organisms from flies to mice, the molecular biology of HOX proteins remains poorly documented. In particular, the mechanisms involved in regulating the activity of HOX proteins have been poorly investigated. Nonetheless, based on data available from other well-characterized transcription factors, it can be assumed that HOX protein activity must be finely tuned in a cell-type-specific manner and in response to defined environmental cues. Indeed, records in protein–protein interaction databases or entries in post-translational modification registries clearly support that HOX proteins are the targets of multiple layers of regulation at the protein level. In this context, we review here what has been reported and what can be inferred about how the activities of HOX proteins are regulated by their intracellular distribution.
Collapse
|
13
|
Cain B, Gebelein B. Mechanisms Underlying Hox-Mediated Transcriptional Outcomes. Front Cell Dev Biol 2021; 9:787339. [PMID: 34869389 PMCID: PMC8635045 DOI: 10.3389/fcell.2021.787339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.
Collapse
Affiliation(s)
- Brittany Cain
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|