1
|
Popsuj S, Cohen L, Ward S, Lewis A, Yoshida S, Herrera R A, Cota CD, Stolfi A. CRISPR/Cas9 Protocols for Disrupting Gene Function in the Non-vertebrate Chordate Ciona. Integr Comp Biol 2024; 64:1182-1193. [PMID: 38982335 PMCID: PMC11579527 DOI: 10.1093/icb/icae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The evolutionary origins of chordates and their diversification into the three major subphyla of tunicates, vertebrates, and cephalochordates pose myriad questions about the genetic and developmental mechanisms underlying this radiation. Studies in non-vertebrate chordates have refined our model of what the ancestral chordate may have looked like, and have revealed the pre-vertebrate origins of key cellular and developmental traits. Work in the major tunicate laboratory model Ciona has benefitted greatly from the emergence of CRISPR/Cas9 techniques for targeted gene disruption. Here we review some of the important findings made possible by CRISPR in Ciona, and present our latest protocols and recommended practices for plasmid-based, tissue-specific CRISPR/Cas9-mediated mutagenesis.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lindsey Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sydney Ward
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Agnes Scott College, Decatur, GA 30030, USA
| | - Arabella Lewis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Agnes Scott College, Decatur, GA 30030, USA
| | | | | | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Pickett CJ, Gruner HN, Davidson B. Lhx3/4 initiates a cardiopharyngeal-specific transcriptional program in response to widespread FGF signaling. PLoS Biol 2024; 22:e3002169. [PMID: 38271304 PMCID: PMC10810493 DOI: 10.1371/journal.pbio.3002169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Individual signaling pathways, such as fibroblast growth factors (FGFs), can regulate a plethora of inductive events. According to current paradigms, signal-dependent transcription factors (TFs), such as FGF/MapK-activated Ets family factors, partner with lineage-determining factors to achieve regulatory specificity. However, many aspects of this model have not been rigorously investigated. One key question relates to whether lineage-determining factors dictate lineage-specific responses to inductive signals or facilitate these responses in collaboration with other inputs. We utilize the chordate model Ciona robusta to investigate mechanisms generating lineage-specific induction. Previous studies in C. robusta have shown that cardiopharyngeal progenitor cells are specified through the combined activity of FGF-activated Ets1/2.b and an inferred ATTA-binding transcriptional cofactor. Here, we show that the homeobox TF Lhx3/4 serves as the lineage-determining TF that dictates cardiopharyngeal-specific transcription in response to pleiotropic FGF signaling. Targeted knockdown of Lhx3/4 leads to loss of cardiopharyngeal gene expression. Strikingly, ectopic expression of Lhx3/4 in a neuroectodermal lineage subject to FGF-dependent specification leads to ectopic cardiopharyngeal gene expression in this lineage. Furthermore, ectopic Lhx3/4 expression disrupts neural plate morphogenesis, generating aberrant cell behaviors associated with execution of incompatible morphogenetic programs. Based on these findings, we propose that combinatorial regulation by signal-dependent and lineage-determinant factors represents a generalizable, previously uncategorized regulatory subcircuit we term "cofactor-dependent induction." Integration of this subcircuit into theoretical models will facilitate accurate predictions regarding the impact of gene regulatory network rewiring on evolutionary diversification and disease ontogeny.
Collapse
Affiliation(s)
- C. J. Pickett
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Hannah N. Gruner
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| |
Collapse
|
4
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Abstract
The ascidian Ciona intestinalis type A (or Ciona robusta) is an important organism for elucidating the mechanisms that make the chordate body plan. CRISPR/Cas9 and TAL effector nuclease (TALEN) are widely used to quickly address genetic functions in Ciona. Our previously reported method of CRISPR/Cas9-mediated mutagenesis in this animal has inferior mutation rates compared to those of TALENs. We here describe an updated way to effectively mutate genes with CRISPR/Cas9 in Ciona. Although the construction of TALENs is much more laborious than that of CRISPR/Cas9, this technique is useful for tissue-specific knockouts that are not easy even by the optimized CRISPR/Cas9 method.
Collapse
|
6
|
Kogure YS, Muraoka H, Koizumi WC, Gelin-alessi R, Godard B, Oka K, Heisenberg CP, Hotta K. Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona. Development 2022; 149:277282. [DOI: 10.1242/dev.200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
ABSTRACT
Ventral tail bending, which is transient but pronounced, is found in many chordate embryos and constitutes an interesting model of how tissue interactions control embryo shape. Here, we identify one key upstream regulator of ventral tail bending in embryos of the ascidian Ciona. We show that during the early tailbud stages, ventral epidermal cells exhibit a boat-shaped morphology (boat cell) with a narrow apical surface where phosphorylated myosin light chain (pMLC) accumulates. We further show that interfering with the function of the BMP ligand Admp led to pMLC localizing to the basal instead of the apical side of ventral epidermal cells and a reduced number of boat cells. Finally, we show that cutting ventral epidermal midline cells at their apex using an ultraviolet laser relaxed ventral tail bending. Based on these results, we propose a previously unreported function for Admp in localizing pMLC to the apical side of ventral epidermal cells, which causes the tail to bend ventrally by resisting antero-posterior notochord extension at the ventral side of the tail.
Collapse
Affiliation(s)
- Yuki S. Kogure
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Hiromochi Muraoka
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Wataru C. Koizumi
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Raphaël Gelin-alessi
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Benoit Godard
- Institute of Science and Technology Austria 2 , Klosterneuburg , 3400, Austria
| | - Kotaro Oka
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
- Waseda Research Institute for Science and Engineering, Waseda University 3 , 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480 , Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University 4 , Kaohsiung City 80708 , Taiwan
| | | | - Kohji Hotta
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|