1
|
Oda I, Satou Y. A master regulatory loop that activates genes in a temporally coordinated manner in muscle cells of ascidian embryos. Development 2025; 152:dev204382. [PMID: 39745198 DOI: 10.1242/dev.204382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Ascidian larval muscle cells present a classic example of autonomous development. A regulatory mechanism for these cells has been extensively investigated, and the regulatory gene circuit has been documented from maternal factors to a muscle-specific gene. In the present study, we comprehensively identified genes expressed specifically in ascidian muscle cells, and found that all of them are under control of a positive regulatory loop of Tbx6-r.b and Mrf, the core circuit identified previously. We also found that several transcription factors under control of the Tbx6-r.b/Mrf regulatory loop exhibited various temporal expression profiles, which are probably important for creating functional muscle cells. These results, together with results of previous studies, provide an exhaustive view of the regulatory system enabling autonomous development of ascidian larval muscle cells. It shows that the Tbx6-r.b/Mrf regulatory loop, but not a single gene, serves a 'master' regulatory function. This master regulatory loop not only controls spatial gene expression patterns, but also governs temporal expression patterns in ascidian muscle cells.
Collapse
Affiliation(s)
- Izumi Oda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
He M, Li Y, Li Y, Dong B, Yu H. Dynamics of Chromatin Opening across Larval Development in the Urochordate Ascidian Ciona savignyi. Int J Mol Sci 2024; 25:2793. [PMID: 38474039 DOI: 10.3390/ijms25052793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Ascidian larvae undergo tail elongation and notochord lumenogenesis, making them an ideal model for investigating tissue morphogenesis in embryogenesis. The cellular and mechanical mechanisms of these processes have been studied; however, the underlying molecular regulatory mechanism remains to be elucidated. In this study, assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were applied to investigate potential regulators of the development of ascidian Ciona savignyi larvae. Our results revealed 351 and 138 differentially accessible region genes through comparisons of ATAC-seq data between stages 21 and 24 and between stages 24 and 25, respectively. A joint analysis of RNA-seq and ATAC-seq data revealed a correlation between chromatin accessibility and gene transcription. We further verified the tissue expression patterns of 12 different genes. Among them, Cs-matrix metalloproteinase 24 (MMP24) and Cs-krüppel-like factor 5 (KLF5) were highly expressed in notochord cells. Functional assay results demonstrated that both genes are necessary for notochord lumen formation and expansion. Finally, we performed motif enrichment analysis of the differentially accessible regions in different tailbud stages and summarized the potential roles of these motif-bearing transcription factors in larval development. Overall, our study found a correlation between gene expression and chromatin accessibility and provided a vital resource for understanding the mechanisms of the development of ascidian embryos.
Collapse
Affiliation(s)
- Muchun He
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Yuting Li
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajuan Li
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Oda-Ishii I. Dynamics of transcription factors regulating ascidian embryogenesis. Genesis 2023; 61:e23565. [PMID: 37936528 DOI: 10.1002/dvg.23565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 11/09/2023]
|
4
|
Long J, Mariossi A, Cao C, Mo Z, Thompson JW, Levine MS, Lemaire LA. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc Natl Acad Sci U S A 2023; 120:e2309989120. [PMID: 37856545 PMCID: PMC10614628 DOI: 10.1073/pnas.2309989120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
Thalidomide has a dark history as a teratogen, but in recent years, its derivates have been shown to function as potent chemotherapeutic agents. These drugs bind cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, and modify its degradation targets. Despite these insights, remarkably little is known about the normal function of cereblon in development. Here, we employ Ciona, a simple invertebrate chordate, to identify endogenous Crbn targets. In Ciona, Crbn is specifically expressed in developing muscles during tail elongation before they acquire contractile activity. Crbn expression is activated by Mrf, the ortholog of MYOD1, a transcription factor important for muscle differentiation. CRISPR/Cas9-mediated mutations of Crbn lead to precocious onset of muscle contractions. By contrast, overexpression of Crbn delays contractions and is associated with decreased expression of contractile protein genes such as troponin. This reduction is possibly due to reduced Mrf protein levels without altering Mrf mRNA levels. Our findings suggest that Mrf and Crbn form a negative feedback loop to control the precision of muscle differentiation during tail elongation.
Collapse
Affiliation(s)
- Juanjuan Long
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | | | | | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Laurence A. Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Biology, Saint Louis University, St. Louis, MO63103
| |
Collapse
|
5
|
Gu P, Wu LN. Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma Cells. Nutr Cancer 2023; 75:1263-1270. [PMID: 37139873 DOI: 10.1080/01635581.2023.2178923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The effects of sulforaphane on glycolysis and proliferation of SGC7901 and BGC823 gastric carcinoma cell lines were analyzed, and the potential mediating role of the TBX15/KIF2C axis was explored. SGC7901 and BGC823 cells stably over- or underexpressing TBX15 were exposed to sulforaphane, and cell viability was assessed together with the expression of TBX15, KIF2C, and proteins involved in glycolysis, glucose uptake, and lactate production. Overexpressing TBX15 in SGC7901 and BGC823 cells significantly reduced glucose uptake, lactate production, cell viability, expression of KIF2C, and pyruvate kinase M2-mediated (PKM2) glycolysis. These effects were recapitulated by treatment with sulforaphane. The anti-tumor effects of sulforaphane were antagonized by down-regulation of TBX15, up-regulation of KIF2C or addition of a PKM2 agonist. Sulforaphane can reduce cell proliferation and PKM2-mediated glycolysis in gastric carcinoma cells, apparently by activating the TBX15/KIF2C pathway.
Collapse
Affiliation(s)
- Pei Gu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People’s Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Hubei, Huangshi, Hubei, People’s Republic of China
| | - Li-na Wu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People’s Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Hubei, Huangshi, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Promoter-Adjacent DNA Hypermethylation Can Downmodulate Gene Expression: TBX15 in the Muscle Lineage. EPIGENOMES 2022; 6:epigenomes6040043. [PMID: 36547252 PMCID: PMC9778270 DOI: 10.3390/epigenomes6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
TBX15, which encodes a differentiation-related transcription factor, displays promoter-adjacent DNA hypermethylation in myoblasts and skeletal muscle (psoas) that is absent from non-expressing cells in other lineages. By whole-genome bisulfite sequencing (WGBS) and enzymatic methyl-seq (EM-seq), these hypermethylated regions were found to border both sides of a constitutively unmethylated promoter. To understand the functionality of this DNA hypermethylation, we cloned the differentially methylated sequences (DMRs) in CpG-free reporter vectors and tested them for promoter or enhancer activity upon transient transfection. These cloned regions exhibited strong promoter activity and, when placed upstream of a weak promoter, strong enhancer activity specifically in myoblast host cells. In vitro CpG methylation targeted to the DMR sequences in the plasmids resulted in 86−100% loss of promoter or enhancer activity, depending on the insert sequence. These results as well as chromatin epigenetic and transcription profiles for this gene in various cell types support the hypothesis that DNA hypermethylation immediately upstream and downstream of the unmethylated promoter region suppresses enhancer/extended promoter activity, thereby downmodulating, but not silencing, expression in myoblasts and certain kinds of skeletal muscle. This promoter-border hypermethylation was not found in cell types with a silent TBX15 gene, and these cells, instead, exhibit repressive chromatin in and around the promoter. TBX18, TBX2, TBX3 and TBX1 display TBX15-like hypermethylated DMRs at their promoter borders and preferential expression in myoblasts. Therefore, promoter-adjacent DNA hypermethylation for downmodulating transcription to prevent overexpression may be used more frequently for transcription regulation than currently appreciated.
Collapse
|