1
|
Formery L, Peluso P, Rank DR, Rokhsar DS, Lowe CJ. Antero-posterior patterning in the brittle star Amphipholis squamata and the evolution of echinoderm body plans. EvoDevo 2025; 16:7. [PMID: 40450286 DOI: 10.1186/s13227-025-00244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/11/2025] [Indexed: 06/03/2025] Open
Abstract
Although the adult pentaradial body plan of echinoderms evolved from a bilateral ancestor, identifying axial homologies between the morphologically divergent echinoderms and their bilaterian relatives has been an enduring problem in zoology. The expression of conserved bilaterian patterning genes in echinoderms provides a molecular framework for resolving this puzzle. Recent studies in juvenile asteroids suggest that the bilaterian antero-posterior axis maps onto the medio-lateral axis of the arms, perpendicular to the proximo-distal axis of each of the five rays of the pentaradial body plan. Here, we test this hypothesis in another echinoderm class, the ophiuroids, using the cosmopolitan brittle star Amphipholis squamata. Our results show that the general principles of axial patterning are similar to those described in asteroids, and comparisons with existing molecular data from other echinoderm taxa support the idea that medio-lateral deployment of the bilaterian AP patterning program across the rays predates the evolution of the asterozoans, and likely the echinoderm crown-group. Our data also reveal expression differences between A. squamata and asteroids, which we attribute to secondary modifications specific to ophiuroids. Together, this work provides important comparative data to reconstruct the evolution of axial properties in echinoderm body plans.
Collapse
Affiliation(s)
- L Formery
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA, 93950, USA.
- Department of Cell and Molecular Biology, University of California Berkeley, Berkeley, CA, USA.
| | - P Peluso
- Pacific Biosciences, Menlo Park, CA, USA
| | - D R Rank
- Pacific Biosciences, Menlo Park, CA, USA
| | - D S Rokhsar
- Department of Cell and Molecular Biology, University of California Berkeley, Berkeley, CA, USA
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - C J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA, 93950, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
2
|
McDonald BD, Massri AJ, Berrio A, Byrne M, McClay DR, Wray GA. Contrasting the development of larval and adult body plans during the evolution of biphasic lifecycles in sea urchins. Development 2024; 151:dev203015. [PMID: 39465623 PMCID: PMC11529275 DOI: 10.1242/dev.203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024]
Abstract
Biphasic lifecycles are widespread among animals, but little is known about how the developmental transition between larvae and adults is regulated. Sea urchins are a unique system for studying this phenomenon because of the stark differences between their bilateral larval and pentaradial adult body plans. Here, we use single-cell RNA sequencing to analyze the development of Heliocidaris erythrogramma (He), a sea urchin species with an accelerated, non-feeding mode of larval development. The sequencing time course extends from embryogenesis to roughly a day before the onset of metamorphosis in He larvae, which is a period that has not been covered by previous datasets. We find that the non-feeding developmental strategy of He is associated with several changes in the specification of larval cell types compared to sea urchins with feeding larvae, such as the loss of a larva-specific skeletal cell population. Furthermore, the development of the larval and adult body plans in sea urchins may utilize largely different sets of regulatory genes. These findings lay the groundwork for extending existing developmental gene regulatory networks to cover additional stages of biphasic lifecycles.
Collapse
Affiliation(s)
| | | | | | - Maria Byrne
- School of Life and Environmental Sciences, A11, University of Sydney, Sydney, NSW, 2006, Australia
| | - David R. McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|