1
|
Bencker C, Gschwandtner L, Nayman S, Grikšienė R, Nguyen B, Nater UM, Guennoun R, Sundström-Poromaa I, Pletzer B, Bixo M, Comasco E. Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females. Front Neuroendocrinol 2025; 76:101160. [PMID: 39515587 DOI: 10.1016/j.yfrne.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated with increased susceptibility to mental conditions. This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens. Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor modulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion processing. The interaction between progestagens and the systems involved in the regulation of stress seems to influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins used for contraception can influence neural processes as myelination and neuroprotection, exerting protective effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown. Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intracellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of progestagens from those of estrogens.
Collapse
Affiliation(s)
- Celine Bencker
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Laura Gschwandtner
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Sibel Nayman
- Research Group Longitudinal and Intervention Research, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Ramunė Grikšienė
- Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Lithuania
| | | | - Urs M Nater
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | | | | | - Belinda Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Marie Bixo
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
2
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Abstract
OBJECTIVE To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric traumatic brain injury. DATA SOURCES National Library of Medicine PubMed literature review. STUDY SELECTION The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of traumatic brain injury is summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult traumatic brain injury is reviewed. DATA EXTRACTION AND DATA SYNTHESIS Progesterone is a pleiotropic agent with beneficial effects on secondary injury cascades that occur after traumatic brain injury, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after traumatic brain injury in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human phase II trials of progesterone for adult traumatic brain injury have been published, and two multicenter phase III trials are underway. CONCLUSIONS The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of traumatic brain injury. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, and statue epilepticus).
Collapse
|
4
|
Deutsch ER, Espinoza TR, Atif F, Woodall E, Kaylor J, Wright DW. Progesterone's role in neuroprotection, a review of the evidence. Brain Res 2013; 1530:82-105. [PMID: 23872219 DOI: 10.1016/j.brainres.2013.07.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
The sex hormone progesterone has been shown to improve outcomes in animal models of a number of neurologic diseases, including traumatic brain injury, ischemia, spinal cord injury, peripheral nerve injury, demyelinating disease, neuromuscular disorders, and seizures. Evidence suggests it exerts its neuroprotective effects through several pathways, including reducing edema, improving neuronal survival, and modulating inflammation and apoptosis. In this review, we summarize the functional outcomes and pathophysiologic mechanisms attributed to progesterone treatment in neurologic disease. We then comment on the breadth of evidence for the use of progesterone in each neurologic disease family. Finally, we provide support for further human studies using progesterone to treat several neurologic diseases.
Collapse
Affiliation(s)
- Eric R Deutsch
- Emergency Neurosciences, Department of Emergency Medicine, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, FOB Suite 126, Atlanta, GA 30303, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Tanchuck MA, Cozzoli DK, He I, Kaufman KR, Snelling C, Crabbe JC, Mark GP, Finn DA. Local changes in neurosteroid levels in the substantia nigra reticulata and the ventral tegmental area alter chronic ethanol withdrawal severity in male withdrawal seizure-prone mice. Alcohol Clin Exp Res 2013; 37:784-93. [PMID: 23278716 PMCID: PMC3620817 DOI: 10.1111/acer.12027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/17/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allopregnanolone (ALLO) is a potent positive modulator of γ-aminobutyric acidA receptors (GABAA Rs) that affects ethanol (EtOH) withdrawal. Finasteride (FIN), a 5α-reductase inhibitor that blocks the formation of ALLO and other GABAergic neurosteroids, alters EtOH sensitivity. Recently, we found that Withdrawal Seizure-Prone mice from the first genetic replicate (WSP-1) exhibited behavioral tolerance to the anticonvulsant effect of intrahippocampal ALLO during EtOH withdrawal and that intrahippocampal FIN significantly increased EtOH withdrawal severity. The purpose of this study was to determine whether neurosteroid manipulations in the substantia nigra reticulata (SNR) and ventral tegmental area (VTA) produced effects during EtOH withdrawal comparable to those seen with intrahippocampal ALLO and FIN. METHODS Male WSP-1 mice were surgically implanted with bilateral guide cannulae aimed at the SNR or VTA at 2 weeks prior to EtOH vapor or air exposure for 72 hours. Initial studies examined the anticonvulsant effect of a single ALLO infusion (0, 100, or 400 ng/side) at a time corresponding to peak withdrawal in the air- and EtOH-exposed mice. Separate studies examined the effect of 4 FIN infusions (0 or 10 μg/side/d) during the development of physical dependence on the expression of EtOH withdrawal. RESULTS ALLO infusion exerted a potent anticonvulsant effect in EtOH-naïve mice, but a diminished anticonvulsant effect during EtOH withdrawal. Administration of FIN into the SNR exerted a delayed proconvulsant effect in EtOH-naïve mice, whereas infusion into the VTA increased EtOH withdrawal duration. CONCLUSIONS Activation of local GABAA Rs in the SNR and VTA via ALLO infusion is sufficient to exert an anticonvulsant effect in naïve mice and to produce behavioral tolerance to the anticonvulsant effect of ALLO infusion during EtOH withdrawal. Thus, EtOH withdrawal reduced sensitivity of GABAA Rs to GABAergic neurosteroids in 2 neuroanatomical substrates within the basal ganglia in WSP-1 male mice.
Collapse
Affiliation(s)
- Michelle A Tanchuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Steroid hormones may alter mnemonic processes. The majority of investigations have focused on the effects of 17β-estradiol (E(2)) to mediate learning. However, progesterone (P(4)), which varies across endogenous hormonal milieu with E(2), may also have effects on cognitive processes. P(4) may have effects in the hippocampus, prefrontal cortex (PFC) and/or striatum to enhance cognitive performance. Cognitive performance/learning has been assessed using tasks that are mediated by the hippocampus (water maze), PFC (object recognition) and striatum (conditioning). Our findings suggest that progestogens can have pervasive effects to enhance cognitive performance and learning in tasks mediated by the hippocampus, PFC and striatum and that these effects may be in part independent of actions at intracellular progestin receptors. Progestogens may therefore influence cognitive processes.
Collapse
|
7
|
Frye CA, Walf A. Progesterone, administered before kainic acid, prevents decrements in cognitive performance in the Morris Water Maze. Dev Neurobiol 2011; 71:142-52. [PMID: 20715152 DOI: 10.1002/dneu.20832] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The nature of progesterone (P₄)'s neuroprotective effects is of interest. We investigated effects of P₄ when administered before, or after, kainic acid, which produces ictal activity and damage to the hippocampus, to mediate effects on spatial performance. The hypothesis was that P₄, compared with vehicle, would reduce decrements in Morris Water Maze performance induced by kainic acid. Experiment 1: We examined the effects of kainic acid on plasma stress hormone, corticosterone, and progestogen (P₄ and its metabolites) levels in plasma and the hippocampus after subcutaneous (s.c.) P₄ administration to ovariectomized rats. Rats administered kainic acid had the highest corticosterone levels immediately following injection. P₄ is 5α-reduced to dihydroprogesterone (DHP) and subsequently metabolized to 5α-pregnan-3α-ol-20-one (3α,5α-THP) by 3α-hydroxysteroid dehydrogenase. The regimen of P₄ used produced circulating and hippocampal levels of P₄, DHP, and 3α,5α-THP within a physiological range, which declined at 14 hours postinjection and were not altered by kainic acid. Experiment 2: The physiological P₄ regimen was administered to rats before, or after, kainic acid-induced seizures, and later effects on water maze performance were compared with that of rats administered vehicle. Rats administered kainic acid had significantly poorer performance in the water maze (i.e., increased latencies and distances to the hidden platform) than did rats administered vehicle. Administration of P₄ before, but not after, kainic acid prevented these performance deficits. Thus, these data suggest that a physiological regimen of P₄ can prevent some of the deficits in water maze performance produced by kainic acid.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, New York 12222, USA.
| | | |
Collapse
|
8
|
Wagner AK, Miller MA, Scanlon J, Ren D, Kochanek PM, Conley YP. Adenosine A1 receptor gene variants associated with post-traumatic seizures after severe TBI. Epilepsy Res 2010; 90:259-72. [PMID: 20609566 PMCID: PMC2933564 DOI: 10.1016/j.eplepsyres.2010.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/22/2010] [Accepted: 06/01/2010] [Indexed: 01/07/2023]
Abstract
Post-traumatic seizures (PTS) are a significant complication from traumatic brain injury (TBI). Adenosine, a major neuroprotective and neuroinhibitory molecule, is important in experimental epilepsy models. Thus, we investigated the adenosine A1 receptor (A1AR) gene and linked it with clinical data extracted for 206 subjects with severe TBI. Tagging SNPs rs3766553, rs903361, rs10920573, rs6701725, and rs17511192 were genotyped, and variant and haplotype associations with PTS were explored. We investigated further genotype, grouped genotype, and allelic associations with PTS for rs3766553 and rs10920573. Multivariate analysis of rs3766553 demonstrated an association between the AA genotype and increased early PTS incidence. In contrast, the GG genotype was associated with increased late and delayed-onset PTS rates. Multivariate analysis of rs10920573 revealed an association between the CT genotype and increased late PTS. Multiple risk genotype analysis showed subjects with both risk genotypes had a 46.7% chance of late PTS. To our knowledge, this is the first report implicating genetic variability in the A1AR with PTS, or any type of seizure disorder. These results provide a rationale for further studies investigating how adenosine neurotransmission impacts PTS, evaluating anticonvulsants in preventing and treating PTS, and developing and testing targeted adenosinergic therapies aimed at reducing PTS.
Collapse
Affiliation(s)
- Amy K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Suite 202, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Stein DG, Wright DW. Progesterone in the clinical treatment of acute traumatic brain injury. Expert Opin Investig Drugs 2010; 19:847-57. [DOI: 10.1517/13543784.2010.489549] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Singh S, Hota D, Prakash A, Khanduja KL, Arora SK, Chakrabarti A. Allopregnanolone, the active metabolite of progesterone protects against neuronal damage in picrotoxin-induced seizure model in mice. Pharmacol Biochem Behav 2010; 94:416-422. [PMID: 19840816 DOI: 10.1016/j.pbb.2009.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 01/24/2023]
Abstract
Progesterone exerts anti-seizure effect against several chemoconvulsants. However, there is no published report on the interaction between progesterone and picrotoxin (PTX). The present study evaluated the effects of progesterone and its active metabolite, allopregnanolone against PTX-induced seizures, brain lipid peroxidation and DNA fragmentation in male mice. Finasteride, a 5alpha-reductase inhibitor and indomethacin, an inhibitor of 3infinity-hydroxysteroid dehydrogenase were assessed against progesterone's effects on PTX-induced seizures, brain lipid peroxidation and DNA fragmentation. PTX produced clonic-tonic seizures in mice with CD50 and CD97 of 2.4 and 4.0mg/kg, i.p. respectively. Progesterone significantly countered PTX-induced seizures, with ED50 of 78.30mg/kg and ED97 of 200mg/kg. Progesterone antagonized PTX-induced DNA fragmentation. Finasteride (200mg/kg) and indomethacin (1mg/kg) reversed the anti-seizure and anti-DNA fragmentation effects of progesterone. Allopregnanolone, also protected against PTX-induced seizures and DNA fragmentation. There was no significant change in the brain lipid peroxidation parameters in any of the treatment groups. It may be concluded that progesterone protects against PTX-induced seizures and DNA fragmentation through its active metabolites allopregnanolone and 5alpha-pregnan-3,20-dione. However, it appears from the present study that, the neuroprotection with progesterone is primarily on account of allopregnalone. The therapeutic potential of allopregnanolone deserves to be evaluated clinically.
Collapse
Affiliation(s)
- Surjit Singh
- Departments of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Traumatic brain injury is a significant clinical problem for which there is still no effective treatment. Recent laboratory and clinical data demonstrate a potentially beneficial role for neurosteroids, such as progesterone and allopregnanolone, in the treatment of traumatic brain injury, ischemic stroke and some neurodegenerative disorders. Unlike single-target agents, progesterone affects many of the molecular and physiological processes in the cascade of secondary damage after a traumatic brain injury. This article updates a 2006 Future Neurology review of the research on progesterone and its metabolites in the treatment of traumatic brain injury, and presents new evidence that vitamin D deficiency can reduce progesterone neuroprotection, while combining progesterone with vitamin D produces better functional outcomes after TBI compared with eithertreatment alone.
Collapse
Affiliation(s)
- Milos Cekic
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Donald G Stein
- Clinic B, Suite 5100, 1365B Clifton Road NE, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
PENCE SADRETTIN, BOSNAK MEHMET, KURTUL NACIYE, UGUR METEGUROL, ERKUTLU IBRAHIM, BAGCI CAHIT, TAN UNER. THE EFFECT OF PROGESTERONE ON TOTAL BRAIN TISSUE SIALIC ACID LEVELS IN EXPERIMENTAL EPILEPSY. Int J Neurosci 2009; 118:105-18. [DOI: 10.1080/00207450601044611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Pençe S, Erkutlu I, Kurtul N, Alptekin M, Tan U. Effects of progesterone on total brain tissue adenosine deaminase activity in experimental epilepsy. Int J Neurosci 2009; 119:204-13. [PMID: 19125374 DOI: 10.1080/00207450802055374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Single seizure and epilepsy is one of the most commonly encountered neurologic disorders in elderly individuals, arising as a result of complex and often multiple acquired underlying pathologies. Adenosine, acting at A1 receptors, exhibits anticonvulsant effects in experimental epilepsy and inhibits progression to status epilepticus. Adenosine deaminase is the enzyme for the regulation of adenosine levels. Therefore any change in adenosine deaminase levels will reflect to adenosine levels. Adenosine deaminase levels were decreased in the groups that were given progesterone. Progesterone may have an antiseizure effect with the additional finding decreased levels of adenosine deaminase that would have resulted in increased adenosine levels that exerts anticonvulsant effect via GABA-A receptors. Further studies are needed to evaluate the role of progesterone effects on adenosine deaminase levels and its mechanism(s) in the pathogenesis.
Collapse
Affiliation(s)
- Sadrettin Pençe
- Department of Physiology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | | | | | | | | |
Collapse
|
14
|
Aguirre CC, Baudry M. Progesterone reverses 17beta-estradiol-mediated neuroprotection and BDNF induction in cultured hippocampal slices. Eur J Neurosci 2009; 29:447-54. [PMID: 19175406 PMCID: PMC2993569 DOI: 10.1111/j.1460-9568.2008.06591.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the many similarities in mechanisms of action, targets and effects, progesterone (P4), estrogen and neurotrophins have been implicated in synaptic plasticity as well as in neuroprotection and neurodegeneration. In this study, we examined the interactions between 17beta-estradiol (E2) and P4 and brain-derived neurotrophic factor (BDNF) on both plasticity and excitotoxicity in rat cultured hippocampal slices. First, we evaluated the neuroprotective effects of E2 and P4 against N-methyl-D-aspartate (NMDA) toxicity in cultured rat hippocampal slices. As previously reported, pretreatment with 10 nm E2 (24 h) was neuroprotective against NMDA toxicity. However, P4 (10 nm) added 20 h after E2 treatment for 4 h reversed its protective effect. In addition, the same E2 treatment resulted in an increase in BDNF protein levels as well as in activation of its receptor, TrkB, while addition of P4 attenuated E2-mediated increase in BDNF and TrkB levels. Furthermore, E2-mediated neuroprotection was eliminated by a BDNF scavenger, TrkB-Fc. Our results indicate that E2 neuroprotective effects are mediated through the BDNF pathway and that, under certain conditions, P4 antagonizes the protective effect of estrogen.
Collapse
Affiliation(s)
- Claudia C Aguirre
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | |
Collapse
|
15
|
Gililland-Kaufman KR, Tanchuck MA, Ford MM, Crabbe JC, Beadles-Bohling AS, Snelling C, Mark GP, Finn DA. The neurosteroid environment in the hippocampus exerts bi-directional effects on seizure susceptibility in mice. Brain Res 2008; 1243:113-23. [PMID: 18840414 PMCID: PMC2613069 DOI: 10.1016/j.brainres.2008.09.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/04/2008] [Accepted: 09/06/2008] [Indexed: 11/28/2022]
Abstract
The progesterone derivative allopregnanolone (ALLO) rapidly potentiates gamma-aminobutyric acid(A) (GABA(A)) receptor mediated inhibition. The present studies determined whether specific manipulation of neurosteroid levels in the hippocampus would alter seizure susceptibility in an animal model genetically susceptible to severe ethanol (EtOH) withdrawal, Withdrawal Seizure-Prone (WSP) mice. Male WSP mice were surgically implanted with bilateral guide cannulae aimed at the CA1 region of the hippocampus one week prior to measuring seizure susceptibility to the convulsant pentylenetetrazol (PTZ), given via timed tail vein infusion. Bilateral intra-hippocampal infusion of ALLO (0.1 microg/side) was anticonvulsant, increasing the threshold dose of PTZ for onset to myoclonic twitch and face and forelimb clonus by 2- to 3-fold. In contrast, infusion of the 5 alpha-reductase inhibitor finasteride (FIN; 2 microg/side), which decreases endogenous ALLO levels, exhibited a proconvulsant effect. During withdrawal from chronic EtOH exposure, WSP mice were tolerant to the anticonvulsant effect of intra-hippocampal ALLO infusion, consistent with published results following systemic injection. Finally, administration of intra-hippocampal FIN given only during the development of physical dependence significantly increased EtOH withdrawal severity, measured by handling-induced convulsions. These findings are the first demonstration that bi-directional manipulation of hippocampal ALLO levels produces opposite behavioral consequences that are consistent with alterations in GABAergic inhibitory tone in drug-naive mice. Importantly, EtOH withdrawal rendered WSP mice less sensitive to ALLO's anticonvulsant effect and more sensitive to FIN's proconvulsant effect, suggesting an alteration in the sensitivity of hippocampal GABA(A) receptors in response to fluctuations in GABAergic neurosteroids during ethanol withdrawal.
Collapse
|
16
|
Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J. Progesterone receptors: form and function in brain. Front Neuroendocrinol 2008; 29:313-39. [PMID: 18374402 PMCID: PMC2398769 DOI: 10.1016/j.yfrne.2008.02.001] [Citation(s) in RCA: 494] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022]
Abstract
Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stein DG. Progesterone exerts neuroprotective effects after brain injury. BRAIN RESEARCH REVIEWS 2008; 57:386-97. [PMID: 17826842 PMCID: PMC2699575 DOI: 10.1016/j.brainresrev.2007.06.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 01/06/2023]
Abstract
Progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. This review assesses recent, primarily in vivo, evidence that progesterone can play an important role in promoting and enhancing repair after traumatic brain injury and stroke. Although many of its specific actions on neuroplasticity remain to be discovered, there is growing evidence that this hormone may be a safe and effective treatment for traumatic brain injury and other neural disorders in humans.
Collapse
Affiliation(s)
- Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Frye CA, Walf AA. In the ventral tegmental area, the membrane-mediated actions of progestins for lordosis of hormone-primed hamsters involve phospholipase C and protein kinase C. J Neuroendocrinol 2007; 19:717-24. [PMID: 17680887 DOI: 10.1111/j.1365-2826.2007.01580.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Progestin-facilitated lordosis of rodents is enhanced by activation of dopamine type 1 (D(1)) or GABA(A) receptors, their downstream G-proteins, and/or second messengers in the ventral tegmental area (VTA). We examined whether the ability of progestins to enhance lordosis via actions at D(1) and/or GABA(A) receptors is contingent upon activation of the second messenger phospholipase C (PLC) and its associated kinase, protein kinase C (PKC), in the VTA. If the actions of progestins through D(1) and GABA(A) receptors in the VTA are mediated through PLC and PKC, then inhibiting PLC formation (Experiment 1) or blocking PKC (Experiment 2) should reduce progestin-facilitated lordosis and its enhancement by D(1) (SKF38393) or GABA(A) (muscimol) receptor agonists. In Experiment 1, ovariectomised hamsters, primed with oestradiol (10 microg; h 0) + progesterone (100 microg; h 45), were pretested for lordosis and motor behaviour (h 48) and then infused with the PLC inhibitor, U73122 (400 nM/side), or vehicle. Thirty minutes later, hamsters were retested and then received infusions of SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle to the VTA. Hamsters were post-tested for lordosis and motor behaviour 30 min later. In Experiment 2, a similar protocol was utilised except that instead of the PLC inhibitor hamsters were infused with the PKC inhibitor, bisindolylmaleimide (75 nM/side). Systemic progesterone, SKF38393-, and muscimol-facilitated lordosis was attenuated by infusion of the PLC inhibitor, U73122, or the PKC inhibitor, bisindolylmaleimide, compared to vehicle to the VTA. Thus, the actions of progestins in the VTA to enhance lordosis through D(1) and/or GABA(A) may include downstream activity of PLC and PKC.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/metabolism
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Cell Membrane/metabolism
- Cricetinae
- Dopamine Agonists/metabolism
- Dopamine Agonists/pharmacology
- Estrenes/metabolism
- Estrenes/pharmacology
- Female
- GABA Agonists/metabolism
- GABA Agonists/pharmacology
- Indoles/metabolism
- Indoles/pharmacology
- Lordosis
- Maleimides/metabolism
- Maleimides/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Muscimol/metabolism
- Muscimol/pharmacology
- Ovariectomy
- Progestins/metabolism
- Progestins/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Pyrrolidinones/metabolism
- Pyrrolidinones/pharmacology
- Receptors, Dopamine D1/metabolism
- Receptors, GABA-A/metabolism
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- C A Frye
- Departments of Psychology and Biological Sciences, and the Centers for Neurosience and Life Sciences Research, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
19
|
Mani SK. Signaling mechanisms in progesterone–neurotransmitter interactions. Neuroscience 2006; 138:773-81. [PMID: 16310962 DOI: 10.1016/j.neuroscience.2005.07.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/28/2005] [Accepted: 07/12/2005] [Indexed: 01/27/2023]
Abstract
Ovarian steroid hormones, estradiol and progesterone, modulate neuroendocrine functions in the CNS resulting in alterations in physiology in female mammals. Classical model of steroid hormone action assumes that these neural effects are predominantly mediated via their intracellular receptors functioning as "ligand-dependent" transcription factors in the steroid-sensitive neurons regulating genes and genomic networks with profound behavioral consequences. Steroid receptors are phosphoproteins and steroid hormone-dependent, receptor-mediated transcription is dependent on the state of phosphorylation of the cognate receptors and/or their co-regulator proteins. Studies from our laboratory have demonstrated that in addition to the steroid hormones, intracellular steroid receptors can be activated in a "ligand-independent" manner by neurotransmitters that can alter the dynamic equilibrium between neuronal phosphatases and kinases. Using biochemical and molecular approaches we have elucidated that the signaling cascade initiated by neurotransmitter, dopamine, converges with steroid hormone-initiated pathway to regulate neuroendocrine pathways associated with reproductive behavior. Signal transduction via protein phosphorylation is common to the molecular pathways through which steroid hormones and neurotransmitters mediate their physiological effects in the CNS involving a high degree of cross-talk and reinforcement among rapid, membrane-initiated pathways at the G-protein level and the classical intracellular signaling pathways at the transcriptional level in mammals. The molecular mechanisms, by which a multitude of signals converge with steroid receptors to delineate a genomic level of cross-talk, provide new avenues for understanding the role of steroid hormones in brain and behavior.
Collapse
Affiliation(s)
- S K Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Haut SR, Bigal ME, Lipton RB. Chronic disorders with episodic manifestations: focus on epilepsy and migraine. Lancet Neurol 2006; 5:148-157. [PMID: 16426991 PMCID: PMC1457022 DOI: 10.1016/s1474-4422(06)70348-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epilepsy and migraine are chronic neurological disorders with episodic manifestations that are commonly treated in neurological practice and frequently occur together. In this review we examine similarities and contrasts between these disorders, with focus on epidemiology and classification, temporal coincidence, triggers, and mechanistically based therapeutic overlap. This investigation draws attention to unique aspects of both epilepsy and migraine, while identifying areas of crossover in which each specialty could benefit from the experience of the other.
Collapse
Affiliation(s)
- Sheryl R Haut
- Comprehensive Epilepsy Management Center, Department of Neurology, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo E Bigal
- Department of Neurology, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard B Lipton
- Department of Neurology and Department of Epidemiology and Population Health, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|