1
|
Malygin AS, Yasnetsov VV. Design and evaluation of pharmacological properties of a new 1,3,4-thiadiazolylamide derivative of 2-propylpentanoic acid. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The use of the pharmacophoric approach is a promising direction for modifying the chemical structure of 2-propylpentanoic (valproic) acid in order to obtain new drugs.
Materials and methods: In the experiments on mice, acute toxicity, neurotoxicity, antiepileptic activity and analgesic effect of N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-propylpentanamide (valprazolamide) were evaluated. LD50 was determined by probit analysis. Neurotoxicity was determined in a rotarod test and a bar test in mice. The effects of valprazolamide on the exploratory behavior of mice in open field test and in a light/dark transition test were evaluated. Its antiepileptic activity was tested in mice against seizures induced by maximal electroshock, pentylenetetrazole (scPTZ); isoniazid, thiosemicarbazide, pilocarpine, and camphor. The analgesic effect was studied in a hot plate test.
Results and discussion: N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-propylpentanamide was obtained by introducing pharmacophores into the structure of 2-propylpentanoic acid: a substituted amide group and an electron-donor domain of 1,3,4-thiadiazole. The LD50 value for intraperitoneal administration of a new 2-propylpentanoic acid: derivative to mice was 924.8 mg/kg, and the TD50 value in the rotarod test and the bar test were 456.7 mg/kg and 546.7 mg/kg, respectively. The suppression of orienting responses in the animals was noted when it was administered in neurotoxic doses. Valprazolamide showed the most antiepileptic activity on models of MES, scPTZ and isoniazid antagonism tests. The ED50 values were 138.4 mg/kg, 74.5 mg/kg, and 126.8 mg/kg, respectively. The therapeutic indices for these models of epilepsy were 6.7; 12.4; 7.3, and protective index – 3.3; 6.1 and 3.6, respectively. In the hot plate test, valprazolamide increased the latency period before a defensive response to a thermal stimulus (ED50 165 mg/kg).
Conclusion: N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-propylpentanamide is a new 1,3,4-thiadiazolylamide derivative of 2-propylpentanoic acid with antiepileptic and analgesic activities, which belongs to the group of low-toxic agents.
Graphic abstract
N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-propylpentanamide (3D)
LD50=924.8 mg/kg (mice, intraperitoneally)
TD50=456.7 mg/kg (rotarod, mice, intraperitoneally)
ED50=138.4 mg/kg (MES, mice, intraperitoneally)
ED50=74.5 mg/kg (scPTZ, mice, intraperitoneally)
Collapse
|
2
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
3
|
Morales JF, Chuguransky S, Alberca LN, Alice JI, Goicoechea S, Ruiz ME, Bellera CL, Talevi A. Positive Predictive Value Surfaces as a Complementary Tool to Assess the Performance of Virtual Screening Methods. Mini Rev Med Chem 2021; 20:1447-1460. [PMID: 32072906 DOI: 10.2174/1871525718666200219130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Since their introduction in the virtual screening field, Receiver Operating Characteristic (ROC) curve-derived metrics have been widely used for benchmarking of computational methods and algorithms intended for virtual screening applications. Whereas in classification problems, the ratio between sensitivity and specificity for a given score value is very informative, a practical concern in virtual screening campaigns is to predict the actual probability that a predicted hit will prove truly active when submitted to experimental testing (in other words, the Positive Predictive Value - PPV). Estimation of such probability is however, obstructed due to its dependency on the yield of actives of the screened library, which cannot be known a priori. OBJECTIVE To explore the use of PPV surfaces derived from simulated ranking experiments (retrospective virtual screening) as a complementary tool to ROC curves, for both benchmarking and optimization of score cutoff values. METHODS The utility of the proposed approach is assessed in retrospective virtual screening experiments with four datasets used to infer QSAR classifiers: inhibitors of Trypanosoma cruzi trypanothione synthetase; inhibitors of Trypanosoma brucei N-myristoyltransferase; inhibitors of GABA transaminase and anticonvulsant activity in the 6 Hz seizure model. RESULTS Besides illustrating the utility of PPV surfaces to compare the performance of machine learning models for virtual screening applications and to select an adequate score threshold, our results also suggest that ensemble learning provides models with better predictivity and more robust behavior. CONCLUSION PPV surfaces are valuable tools to assess virtual screening tools and choose score thresholds to be applied in prospective in silico screens. Ensemble learning approaches seem to consistently lead to improved predictivity and robustness.
Collapse
Affiliation(s)
- Juan F Morales
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sara Chuguransky
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Juan I Alice
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sofía Goicoechea
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - María E Ruiz
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Carolina L Bellera
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| |
Collapse
|
4
|
Finnell RH, Caiaffa CD, Kim SE, Lei Y, Steele J, Cao X, Tukeman G, Lin YL, Cabrera RM, Wlodarczyk BJ. Gene Environment Interactions in the Etiology of Neural Tube Defects. Front Genet 2021; 12:659612. [PMID: 34040637 PMCID: PMC8143787 DOI: 10.3389/fgene.2021.659612] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Human structural congenital malformations are the leading cause of infant mortality in the United States. Estimates from the United States Center for Disease Control and Prevention (CDC) determine that close to 3% of all United States newborns present with birth defects; the worldwide estimate approaches 6% of infants presenting with congenital anomalies. The scientific community has recognized for decades that the majority of birth defects have undetermined etiologies, although we propose that environmental agents interacting with inherited susceptibility genes are the major contributing factors. Neural tube defects (NTDs) are among the most prevalent human birth defects and as such, these malformations will be the primary focus of this review. NTDs result from failures in embryonic central nervous system development and are classified by their anatomical locations. Defects in the posterior portion of the neural tube are referred to as meningomyeloceles (spina bifida), while the more anterior defects are differentiated as anencephaly, encephalocele, or iniencephaly. Craniorachischisis involves a failure of the neural folds to elevate and thus disrupt the entire length of the neural tube. Worldwide NTDs have a prevalence of approximately 18.6 per 10,000 live births. It is widely believed that genetic factors are responsible for some 70% of NTDs, while the intrauterine environment tips the balance toward neurulation failure in at risk individuals. Despite aggressive educational campaigns to inform the public about folic acid supplementation and the benefits of providing mandatory folic acid food fortification in the United States, NTDs still affect up to 2,300 United States births annually and some 166,000 spina bifida patients currently live in the United States, more than half of whom are now adults. Within the context of this review, we will consider the role of maternal nutritional status (deficiency states involving B vitamins and one carbon analytes) and the potential modifiers of NTD risk beyond folic acid. There are several well-established human teratogens that contribute to the population burden of NTDs, including: industrial waste and pollutants [e.g., arsenic, pesticides, and polycyclic aromatic hydrocarbons (PAHs)], pharmaceuticals (e.g., anti-epileptic medications), and maternal hyperthermia during the first trimester. Animal models for these teratogens are described with attention focused on valproic acid (VPA; Depakote). Genetic interrogation of model systems involving VPA will be used as a model approach to discerning susceptibility factors that define the gene-environment interactions contributing to the etiology of NTDs.
Collapse
Affiliation(s)
- Richard H. Finnell
- Department of Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlo Donato Caiaffa
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Sung-Eun Kim
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - John Steele
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Xuanye Cao
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Tukeman
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Ying Linda Lin
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Robert M. Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Malygin A, Demidova M, Skachilova S, Shilova E. Synthesis of a novel amide derivative of valproic acid and 1,3,4-thiadiazole with antiepileptic activity. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Valproates are commonly used to treat various forms of epilepsy. Problems accompanying their clinical application include drug resistance, adverse effects, acute and chronic toxicity. Safer anticonvulsants with improved efficacy can be obtained through the chemical modification of valproic acid structure. Thiadiazole-linked amide derivatives of valproates hold great promise because 1,3,4-thiadiazole can improve the drug’s bioavailability and reduce its toxicity. The aim of this work was to synthesize a novel amide derivative of valproic acid and 1,3,4-thiadiazole exerting antiepileptic activity. The chemical structure of the synthesized valproate was studied by IR, proton NMR and 13С-NMR-spectroscopy, mass spectroscopy and elemental analysis. The purity and individuality of the compound was confirmed by thin-layer and high-performance liquid chromatography. Its antiepileptic activity was assessed in the test with intraperitoneally injected 250 mg/kg isoniazid and subsequent Probit analysis. The synthesized N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-propyl pentane amide (valprazolamide) had the following characteristics. ESI+MS: m/z 256.1 [M + H]+; MRM transitions: m/z 256.1 — m/z 81.0 and m/z 130.1. The valproate exerted antiepileptic activity against isoniazid-induced seizures in mice. In the test with isoniazid, ED50 of intraperitoneally injected VPZ was 126.8 mg/kg (95% CI: 65.5–245.4). Its therapeutic index was 7.3.
Collapse
Affiliation(s)
| | | | - S.Ya. Skachilova
- All-Russian Research Center for the Safety of Bioactive Substances, Staraya Kupavna, Moscow region, Russia
| | - E.V. Shilova
- All-Russian Research Center for the Safety of Bioactive Substances, Staraya Kupavna, Moscow region, Russia
| |
Collapse
|
6
|
Comparative modeling and virtual screening for the identification of novel inhibitors for myo-inositol-1-phosphate synthase. Mol Biol Rep 2014; 41:5039-52. [PMID: 24752405 DOI: 10.1007/s11033-014-3370-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 04/05/2014] [Indexed: 12/20/2022]
Abstract
Myo-inositol-1-phosphate (MIP) synthase is a key enzyme in the myo-inositol biosynthesis pathway. Disruption of the inositol signaling pathway is associated with bipolar disorders. Previous work suggested that MIP synthase could be an attractive target for the development of anti-bipolar drugs. Inhibition of this enzyme could possibly help in reducing the risk of a disease in patients. With this objective, three dimensional structure of the protein was modeled followed by the active site prediction. For the first time, computational studies were carried out to obtain structural insights into the interactive behavior of this enzyme with ligands. Virtual screening was carried out using FILTER, ROCS and EON modules of the OpenEye scientific software. Natural products from the ZINC database were used for the screening process. Resulting compounds were docked into active site of the target protein using FRED (Fast Rigid Exhaustive Docking) and GOLD (Genetic Optimization for Ligand Docking) docking programs. The analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in ligand binding. Four compounds are shortlisted and their binding assay analysis is underway.
Collapse
|
7
|
Design, synthesis and evaluation of dialkyl 4-(benzo[d][1,3]dioxol-6-yl)-1,4-dihydro-2,6-dimethyl-1-substituted pyridine-3,5-dicarboxylates as potential anticonvulsants and their molecular properties prediction. Eur J Med Chem 2013; 66:516-25. [DOI: 10.1016/j.ejmech.2013.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/25/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022]
|
8
|
Bansal M, Goel B, Shukla S, Srivastava RS. Synthesis, characterization & anticonvulsant activity of amide derivatives of 4-amino-1,2-naphthoquinone. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0531-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|