1
|
Trimmel K, Vos SB, Binding L, Caciagli L, Xiao F, van Graan LA, Koepp MJ, Thompson PJ, Duncan JS. Naming fMRI-guided white matter language tract volumes influence naming decline after temporal lobe resection. J Neurol 2024; 271:4158-4167. [PMID: 38583105 PMCID: PMC11233363 DOI: 10.1007/s00415-024-12315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE The aim of this study was to explore the relation of language functional MRI (fMRI)-guided tractography with postsurgical naming decline in people with temporal lobe epilepsy (TLE). METHODS Twenty patients with unilateral TLE (9 left) were studied with auditory and picture naming functional MRI tasks. Activation maxima in the left posterobasal temporal lobe were used as seed regions for whole-brain fibre tractography. Clinical naming performance was assessed preoperatively, 4 months, and 12 months following temporal lobe resection. Volumes of white matter language tracts in both hemispheres as well as tract volume laterality indices were explored as moderators of postoperative naming decline using Pearson correlations and multiple linear regression with other clinical variables. RESULTS Larger volumes of white matter language tracts derived from auditory and picture naming maxima in the hemisphere of subsequent surgery as well as stronger lateralization of picture naming tract volumes to the side of surgery correlated with greater language decline, which was independent of fMRI lateralization status. Multiple regression for picture naming tract volumes was associated with a significant decline of naming function with 100% sensitivity and 93% specificity at both short-term and long-term follow-up. INTERPRETATION Naming fMRI-guided white matter language tract volumes relate to postoperative naming decline after temporal lobe resection in people with TLE. This can assist stratification of surgical outcome and minimize risk of postoperative language deficits in TLE.
Collapse
Affiliation(s)
- Karin Trimmel
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | - Sjoerd B Vos
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
- Centre for Microscopy Characterisation and Analysis, University of Western Australia, Nedlands, Australia
| | - Lawrence Binding
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Lorenzo Caciagli
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fenglai Xiao
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Louis A van Graan
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Matthias J Koepp
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Pamela J Thompson
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - John S Duncan
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| |
Collapse
|
2
|
Maldonado IL, Descoteaux M, Rheault F, Zemmoura I, Benn A, Margulies D, Boré A, Duffau H, Mandonnet E. Multimodal study of multilevel pulvino-temporal connections: a new piece in the puzzle of lexical retrieval networks. Brain 2024; 147:2245-2257. [PMID: 38243610 PMCID: PMC11146422 DOI: 10.1093/brain/awae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/18/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024] Open
Abstract
Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7 T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.
Collapse
Affiliation(s)
- Igor Lima Maldonado
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
- Department of Neurosurgery, CHRU de Tours, 37000 Tours, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, J1K 2X9 Sherbrooke, Quebec, Canada
- Imeka Solutions, J1H 4A7 Sherbrooke, Quebec, Canada
| | | | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
- Department of Neurosurgery, CHRU de Tours, 37000 Tours, France
| | - Austin Benn
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris Cité, 75006 Paris, France
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX1 3QD Oxford, UK
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris Cité, 75006 Paris, France
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Laboratory, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, J1K 2X9 Sherbrooke, Quebec, Canada
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34090 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumors’, U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, 34000, Montpellier, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, 75010 Paris, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), 75013 Paris, France
- UFR Médecine, Université de Paris Cité, 75006 Paris, France
| |
Collapse
|
3
|
Sabadell V, Trébuchon A, Alario FX. An exploration of anomia rehabilitation in drug-resistant temporal lobe epilepsy. Epilepsy Behav Rep 2024; 27:100681. [PMID: 38881885 PMCID: PMC11178986 DOI: 10.1016/j.ebr.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Around 40% of patients who undergo a left temporal lobe epilepsy (LTLE) surgery suffer from anomia (word-finding difficulties), a condition that negatively impacts quality of life. Despite these observations, language rehabilitation is still understudied in LTLE. We assessed the effect of a four-week rehabilitation on four drug-resistant LTLE patients after their surgery. The anomia rehabilitation was based on cognitive descriptions of word finding deficits in LTLE. Its primary ingredients were psycholinguistic tasks and a psychoeducation approach to help patients cope with daily communication issues. We repeatedly assessed naming skills for trained and untrained words, before and during the therapy using an A-B design with follow-up and replication. Subjective anomia complaint and standardized language assessments were also collected. We demonstrated the effectiveness of the rehabilitation program for trained words despite the persistence of seizures. Furthermore, encouraging results were observed for untrained items. Variable changes in anomia complaint were observed. One patient who conducted the protocol as self-rehabilitation responded similarly to the others, despite the different manner of intervention. These results open promising avenues for helping epileptic patients suffering from anomia. For example, this post-operative program could easily be adapted to be conducted preoperatively.
Collapse
Affiliation(s)
| | - Agnès Trébuchon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | |
Collapse
|
4
|
Biesbroek JM, Lim JS, Weaver NA, Arikan G, Kang Y, Kim BJ, Kuijf HJ, Postma A, Lee BC, Lee KJ, Yu KH, Bae HJ, Biessels GJ. Anatomy of phonemic and semantic fluency: A lesion and disconnectome study in 1231 stroke patients. Cortex 2021; 143:148-163. [PMID: 34450565 DOI: 10.1016/j.cortex.2021.06.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023]
Abstract
Disturbances of semantic and phonemic fluency are common after brain damage, as a manifestation of language, executive, or memory dysfunction. Lesion-symptom mapping (LSM) studies can provide fundamental insights in shared and distinct anatomical correlates of these cognitive functions and help to understand which patients suffer from these deficits. We performed a multivariate support vector regression-based lesion-symptom mapping and structural disconnection study on semantic and phonemic fluency in 1231 patients with acute ischemic stroke. With the largest-ever LSM study on verbal fluency we achieved almost complete brain lesion coverage. Lower performance on both fluency types was related to left hemispheric frontotemporal and parietal cortical regions, and subcortical regions centering on the left thalamus. Distinct correlates for phonemic fluency were the anterior divisions of middle and inferior frontal gyri. Distinct correlates for semantic fluency were the posterior regions of the middle and inferior temporal gyri, parahippocampal and fusiform gyri and triangular part of the inferior frontal gyrus. The disconnectome-based analyses additionally revealed phonemic fluency was associated with a more extensive frontoparietal white matter network, whereas semantic fluency was associated with disconnection of the fornix, mesiotemporal white matter, splenium of the corpus callosum. These results provide the most detailed outline of the anatomical correlates of phonemic and semantic fluency to date, stress the crucial role of subcortical regions and reveal a novel dissociation in the left temporal lobe.
Collapse
Affiliation(s)
- J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands.
| | - Jae-Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Gozdem Arikan
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Yeonwook Kang
- Department of Psychology, Hallym University, Chuncheon, Republic of Korea
| | - Beom Joon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert Postma
- Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands
| | - Byung-Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Keon-Joo Lee
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
5
|
Abstract
Picture naming tasks are currently the gold standard for identifying and preserving language-related areas during awake brain surgery. With multilingual populations increasing worldwide, patients frequently need to be tested in more than one language. There is still no reliable testing instrument, as the available batteries have been developed for specific languages. Heterogeneity in the selection criteria for stimuli leads to differences, for example, in the size, color, image quality, and even names associated with pictures, making direct cross-linguistic comparisons difficult. Here we present MULTIMAP, a new multilingual picture naming test for mapping eloquent areas during awake brain surgery. Recognizing that the distinction between nouns and verbs is necessary for detailed and precise language mapping, MULTIMAP consists of a database of 218 standardized color pictures representing both objects and actions. These images have been tested for name agreement with speakers of Spanish, Basque, Catalan, Italian, French, English, German, Mandarin Chinese, and Arabic, and have been controlled for relevant linguistic features in cross-language combinations. The MULTIMAP test for objects and verbs represents an alternative to the Oral Denomination 80 (DO 80) monolingual pictorial set currently used in language mapping, providing an open-source, standardized set of up-to-date pictures, where relevant linguistic variables across several languages have been taken into account in picture creation and selection.
Collapse
|
6
|
Drane DL, Pedersen NP, Sabsevitz DS, Block C, Dickey AS, Alwaki A, Kheder A. Cognitive and Emotional Mapping With SEEG. Front Neurol 2021; 12:627981. [PMID: 33912122 PMCID: PMC8072290 DOI: 10.3389/fneur.2021.627981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 02/05/2023] Open
Abstract
Mapping of cortical functions is critical for the best clinical care of patients undergoing epilepsy and tumor surgery, but also to better understand human brain function and connectivity. The purpose of this review is to explore existing and potential means of mapping higher cortical functions, including stimulation mapping, passive mapping, and connectivity analyses. We examine the history of mapping, differences between subdural and stereoelectroencephalographic approaches, and some risks and safety aspects, before examining different types of functional mapping. Much of this review explores the prospects for new mapping approaches to better understand other components of language, memory, spatial skills, executive, and socio-emotional functions. We also touch on brain-machine interfaces, philosophical aspects of aligning tasks to brain circuits, and the study of consciousness. We end by discussing multi-modal testing and virtual reality approaches to mapping higher cortical functions.
Collapse
Affiliation(s)
- Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Nigel P. Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David S. Sabsevitz
- Department of Psychology and Psychiatry, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Cady Block
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Adam S. Dickey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar Kheder
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Young JS, Lee AT, Chang EF. A Review of Cortical and Subcortical Stimulation Mapping for Language. Neurosurgery 2021; 89:331-342. [PMID: 33444451 DOI: 10.1093/neuros/nyaa436] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/21/2020] [Indexed: 11/14/2022] Open
Abstract
Since the early descriptions of language function based on observations of patients with language deficits by Broca and Wernicke, neurosurgeons have been focused on characterizing the anatomic regions necessary for language perception and production, and preserving these structures during surgery to minimize patient deficits post operatively. In this supplementary issue on awake intraoperative mapping, we review language processing across multiple domains, highlighting key advances in direct electrical stimulation of different cortical and subcortical regions involved in naming, repetition, reading, writing, and syntax. We then discuss different intraoperative tasks for assessing the function of a given area and avoiding injury to critical, eloquent regions.
Collapse
Affiliation(s)
| | - Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
8
|
Gobbo M, De Pellegrin S, Bonaudo C, Semenza C, Della Puppa A, Salillas E. Two dissociable semantic mechanisms predict naming errors and their responsive brain sites in awake surgery. DO80 revisited. Neuropsychologia 2020; 151:107727. [PMID: 33338472 DOI: 10.1016/j.neuropsychologia.2020.107727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
How do we choose words, and what affects the selection of a specific term? Naming tests such as the DO80 are frequently used to assess language function during brain mapping in awake surgery. The present study aimed to explore whether specific semantic errors become more probable under the stimulation of specific brain areas. Moreover, it meant to determine whether specific semantic characteristics of the items may evoke specific types of error. A corpus-based qualitative semantic analysis of the DO80 items, and the emitted naming errors to those items during direct cortical electrostimulation (DCE) revealed that the number of hyperonyms (i.e. 'vehicle' for car') of an item predicted the emission of a synonym ('automobile' for 'car'). This association occurred mainly in frontal tumor patients, which was corroborated by behavior to lesion analyses. In contrast, the emission of co-hyponyms was associated with tumors located in temporal areas. These two behavior-lesion associations thus dissociated, and were also dependent on item semantic characteristics. Co-hyponym errors might generate from the disruption in a temporal semantic-to-lexical process, and the production of synonyms could be the result of an impairment in a frontal lexical-selection mechanism. A hypothesis on the lexical selection mechanisms exerted by the inferior frontal gyrus is proposed. Crucially, the present data suggest the need for more restrictive naming tasks, with items conditioned by tumor location.
Collapse
Affiliation(s)
- Marika Gobbo
- UOC Neurologic Clinic, University Hospital of Padova, Padova, Italy.
| | | | - Camilla Bonaudo
- Neurosurgery, Department of NEUROFARBA, University Hospital of Careggi, University of Florence, Florence, Italy
| | - Carlo Semenza
- Department of Neurosciences, University of Padova, Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy
| | - Alessandro Della Puppa
- Neurosurgery, Department of NEUROFARBA, University Hospital of Careggi, University of Florence, Florence, Italy
| | - Elena Salillas
- Department of Neurosciences, University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Morshed RA, Young JS, Lee AT, Berger MS, Hervey-Jumper SL. Clinical Pearls and Methods for Intraoperative Awake Language Mapping. Neurosurgery 2020; 89:143-153. [PMID: 33289505 DOI: 10.1093/neuros/nyaa440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intraoperative language mapping of tumor and peritumor tissue is a well-established technique for avoiding permanent neurological deficits and maximizing extent of resection. Although there are several components of language that may be tested intraoperatively (eg, naming, writing, reading, and repetition), there is a lack of consistency in how patients are tested intraoperatively as well as the techniques involved to ensure safety during an awake procedure. Here, we review appropriate patient selection, neuroanesthetic techniques, cortical and subcortical language mapping stimulation paradigms, and selection of intraoperative language tasks used during awake craniotomies. We also expand on existing language mapping reviews by considering how intensity and timing of electrical stimulation may impact interpretation of mapping results.
Collapse
|
10
|
Catricalà E, Polito C, Presotto L, Esposito V, Sala A, Conca F, Gasparri C, Berti V, Filippi M, Pupi A, Sorbi S, Iannaccone S, Magnani G, Cappa SF, Perani D. Neural correlates of naming errors across different neurodegenerative diseases: An FDG-PET study. Neurology 2020; 95:e2816-e2830. [PMID: 33004608 DOI: 10.1212/wnl.0000000000010967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the types of errors produced in a picture naming task by patients with neurodegenerative dementia due to different etiologies and their neural correlates. METHODS The same standardized picture naming test was administered to a consecutive sample of patients (n = 148) who had been studied with [18F] FDG-PET. The errors were analyzed in 3 categories (visual, semantic, and phonologic). The PET data were analyzed using an optimized single-subject procedure, and the statistical parametric mapping multiple regression design was used to explore the correlation between each type of error and brain hypometabolism in the whole group. Metabolic connectivity analyses were run at the group level on 7 left hemisphere cortical areas corresponding to an a priori defined naming network. RESULTS Semantic errors were predominant in most patients, independent of clinical diagnosis. In the whole group analysis, visual errors correlated with hypometabolism in the right inferior occipital lobe and in the left middle occipital lobe. Semantic errors correlated with hypometabolism in the left fusiform gyrus, the inferior and middle temporal gyri, and the temporal pole. Phonologic errors were associated with hypometabolism in the left superior and middle temporal gyri. Both positive (occipital-posterior fusiform) and negative (anterior fusiform gyrus and the superior anterior temporal lobe) connectivity changes were associated with semantic errors. CONCLUSIONS Naming errors reflect the dysfunction of separate stages of the naming process and are specific markers for different patterns of brain involvement. These correlations are not limited to primary progressive aphasia but extend to other neurodegenerative dementias.
Collapse
Affiliation(s)
- Eleonora Catricalà
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Cristina Polito
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Luca Presotto
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Valentina Esposito
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Arianna Sala
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Francesca Conca
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Celeste Gasparri
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Valentina Berti
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Massimo Filippi
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Alberto Pupi
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Sandro Sorbi
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Sandro Iannaccone
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Giuseppe Magnani
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| | - Stefano F Cappa
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy.
| | - Daniela Perani
- From the Faculty of Psychology (E.C., F.C., C.G., S.F.C.), Institute for Advanced Studies, IUSS, Pavia; Nuclear Medicine Unit (C.P., V.B., A.P.), Department of Experimental and Clinical Biomedical Sciences, and NEUROFARBA, Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence; Nuclear Medicine Unit (L.P., A.S., D.P.), IRCCS San Raffaele Hospital, Milan; Faculty of Psychology (V.E., A.S., D.P.), Vita-Salute San Raffaele University, Milan; Department of Neurology and INSPE (M.F., G.M.), San Raffaele Scientific Institute, Milan; Clinical Neuroscience Department (S.I.), San Raffaele Turro Hospital, Milan; IRCCS Fondazione Don Carlo Gnocchi (S.S.), Florence, and IRCCS Fondazione Istituto Neurologico Casimiro Mondino (S.F.C.), Pavia, Italy
| |
Collapse
|
11
|
Coughlin DG, Phillips JS, Roll E, Peterson C, Lobrovich R, Rascovsky K, Ungrady M, Wolk DA, Das S, Weintraub D, Lee EB, Trojanowski JQ, Shaw LM, Vaishnavi S, Siderowf A, Nasrallah IM, Irwin DJ, McMillan CT. Multimodal in vivo and postmortem assessments of tau in Lewy body disorders. Neurobiol Aging 2020; 96:137-147. [PMID: 33002767 DOI: 10.1016/j.neurobiolaging.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
We compared regional retention of 18F-flortaucipir between 20 patients with Lewy body disorders (LBD), 12 Alzheimer's disease patients with positive amyloid positron emission tomography (PET) scans (AD+Aβ) and 15 healthy controls with negative amyloid PET scans (HC-Aβ). In LBD subjects, we compared the relationship between 18F-flortaucipir retention and cerebrospinal fluid (CSF) tau, cognitive performance, and neuropathological tau at autopsy. The LBD cohort was stratified using an Aβ42 cut-off of 192 pg/mL to enrich for groups likely harboring tau pathology (LBD+Aβ = 11, LBD-Aβ = 9). 18F-flortaucipir retention was higher in LBD+AB than HC-Aβ in five, largely temporal-parietal regions with sparing of medial temporal regions. Higher retention was associated with higher CSF total-tau levels (p = 0.04), poorer domain-specific cognitive performance (p = 0.02-0.04), and greater severity of neuropathological tau in corresponding regions. While 18F-flortaucipir retention in LBD is intermediate between healthy controls and AD, retention relates to cognitive impairment, CSF total-tau, and neuropathological tau. Future work in larger autopsy-validated cohorts is needed to define LBD-specific tau biomarker profiles.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Phillips
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Roll
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Lobrovich
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katya Rascovsky
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Ungrady
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Weintraub
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Michael J. Crescenz VA Medical Center, Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Center for Neurodegenerative Disease Research, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev Vaishnavi
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Siderowf
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
12
|
Trimmel K, Caciagli L, Xiao F, van Graan LA, Koepp MJ, Thompson PJ, Duncan JS. Impaired naming performance in temporal lobe epilepsy: language fMRI responses are modulated by disease characteristics. J Neurol 2020; 268:147-160. [PMID: 32747979 PMCID: PMC7815622 DOI: 10.1007/s00415-020-10116-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate alterations of language networks and their relation to impaired naming performance in temporal lobe epilepsy (TLE) using functional MRI. METHODS Seventy-two adult TLE patients (41 left) and 36 controls were studied with overt auditory and picture naming fMRI tasks to assess temporal lobe language areas, and a covert verbal fluency task to probe frontal lobe language regions. Correlation of fMRI activation with clinical naming scores, and alteration of language network patterns in relation to epilepsy duration, age at onset and seizure frequency, were investigated with whole-brain multiple regression analyses. RESULTS Auditory and picture naming fMRI activated the left posterior temporal lobe, and stronger activation correlated with better clinical naming scores. Verbal fluency MRI mainly activated frontal lobe regions. In left and right TLE, a later age of epilepsy onset related to stronger temporal lobe activations, while earlier age of onset was associated with impaired deactivation of extratemporal regions. In left TLE patients, longer disease duration and higher seizure frequency were associated with reduced deactivation. Frontal lobe language networks were unaffected by disease characteristics. CONCLUSIONS While frontal lobe language regions appear spared, temporal lobe language areas are susceptible to dysfunction and reorganisation, particularly in left TLE. Early onset and long duration of epilepsy, and high seizure frequency, were associated with compromised activation and deactivation patterns of task-associated regions, which might account for impaired naming performance in individuals with TLE.
Collapse
Affiliation(s)
- Karin Trimmel
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK. .,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK. .,Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Lorenzo Caciagli
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Fenglai Xiao
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Louis A van Graan
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Matthias J Koepp
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Pamela J Thompson
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0LR, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
13
|
Isella V, Rosazza C, Gazzotti M, Sala J, Morzenti S, Crivellaro C, Appollonio IM, Ferrarese C, Luzzatti C. A Metabolic Imaging Study of Lexical and Phonological Naming Errors in Alzheimer Disease. Am J Alzheimers Dis Other Demen 2020; 35:1533317520922390. [PMID: 32356456 PMCID: PMC10624092 DOI: 10.1177/1533317520922390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Patients with Alzheimer disease (AD) produce a variety of errors on confrontation naming that indicate multiple loci of impairment along the naming process in this disease. We correlated brain hypometabolism, measured with 18fluoro-deoxy-glucose positron emission tomography, with semantic and formal errors, as well as nonwords deriving from phonological errors produced in a picture-naming test by 63 patients with AD. Findings suggest that neurodegeneration leads to: (1) phonemic errors, by interfering with phonological short-term memory, or with control over retrieval of phonological or prearticulatory representations, within the left supramarginal gyrus; (2) semantic errors, by disrupting general semantic or visual-semantic representations at the level of the left posterior middle and inferior occipitotemporal cortex, respectively; (3) formal errors, by damaging the lexical-phonological output interface in the left mid-anterior segment of middle and superior temporal gyri. This topography of semantic-lexical-phonological steps of naming is in substantial agreement with dual-stream neurocognitive models of word generation.
Collapse
Affiliation(s)
- Valeria Isella
- Neurology Department, S. Gerardo Hospital, University of Milano–Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), Milan, Italy
| | | | - Maria Gazzotti
- Department of Psychology, University of Milano–Bicocca, Monza, Italy
| | - Jessica Sala
- Department of Psychology, University of Milano–Bicocca, Monza, Italy
| | - Sabrina Morzenti
- Milan Center for Neuroscience (NeuroMI), Milan, Italy
- Medical Physics, S. Gerardo Hospital, Monza, Italy
| | - Cinzia Crivellaro
- Milan Center for Neuroscience (NeuroMI), Milan, Italy
- Nuclear Medicine, S. Gerardo Hospital, Monza, University of Milano–Bicocca, Italy
| | - Ildebrando Marco Appollonio
- Neurology Department, S. Gerardo Hospital, University of Milano–Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), Milan, Italy
| | - Carlo Ferrarese
- Neurology Department, S. Gerardo Hospital, University of Milano–Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), Milan, Italy
| | - Claudio Luzzatti
- Milan Center for Neuroscience (NeuroMI), Milan, Italy
- Department of Psychology, University of Milano–Bicocca, Monza, Italy
| |
Collapse
|
14
|
Miozzo M, Williams AC, McKhann GM, Hamberger MJ. Topographical gradients of semantics and phonology revealed by temporal lobe stimulation. Hum Brain Mapp 2016; 38:688-703. [PMID: 27654942 DOI: 10.1002/hbm.23409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/18/2023] Open
Abstract
Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Alicia C Williams
- Department of Neurology, Columbia University Medical Center, New York
| | - Guy M McKhann
- Department of Neurology, Columbia University Medical Center, New York
| | - Marla J Hamberger
- Department of Neurology, Columbia University Medical Center, New York
| |
Collapse
|