1
|
Lan Y, Li A, Ding C, Xia J, Zhang X, Luo D. Mechanistic insights into Quetiapine's Protective effects on cognitive function and synaptic plasticity in epileptic rats. Brain Res 2025; 1850:149426. [PMID: 39730023 DOI: 10.1016/j.brainres.2024.149426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
The study aimed to examine the effects of Quetiapine, an atypical antipsychotic medication with purported neuroprotective qualities, on cognitive function and synaptic plasticity in epileptic rats. This investigation also sought to elucidate the mechanisms by which quetiapine influences the activity of the cyclic adenylate response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway and metallomatrix proteinase-9 (MMP9) expression in the context of epilepsy. The epileptic model was induced in rats through the administration of pilocarpine, with normal rats serving as the control group. Within the epilepsy group, two subgroups were established: one receiving normal saline and the other receiving quetiapine. Behavioral assays were utilized to assess learning, memory, and spatial exploration abilities. Furthermore, Western blot analysis, immunohistochemistry (IHC), and immunofluorescence (IF) staining were employed to evaluate the activity of the CREB/BDNF pathway, expression of MMP9 protein, and levels of synaptic plasticity-related proteins. Our study revealed that Quetiapine administration led to a notable enhancement in learning and memory in epileptic rats, as indicated by heightened drinking durations and visitation rates in behavioral assessments. Furthermore, Quetiapine upregulated the expression of pro-BDNF, m-BDNF, p-CREB, and CREB within the hippocampus, along with elevating mRNA levels of BDNF and CREB. Additionally, Quetiapine suppressed MMP-9 expression and promoted synaptic plasticity by augmenting SYN and PSD-95 expression levels in the hippocampus. Therefore, Quetiapine improved cognitive functions such as learning, memory, and spatial exploration in epileptic rats. Moreover, Quetiapine activated the CREB/BDNF signaling pathway, suppressed MMP-9 expression, and promoted synaptic plasticity.
Collapse
Affiliation(s)
- Yanping Lan
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China.
| | - Ao Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Chenzhe Ding
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| | - Jianxue Xia
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| | - Xuebing Zhang
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| | - Dongyang Luo
- Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China
| |
Collapse
|
2
|
Espinoza I, Cabrera F, Morales-Medina JC, Gómez-Villalobos MDJ, Flores G. The administration of Cerebrolysin elicits neuroprotective and neurorepair effects in an animal model of type 1 diabetes mellitus. Behav Brain Res 2024; 471:115115. [PMID: 38897418 DOI: 10.1016/j.bbr.2024.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disorder impacting cerebral function. The administration of Streptozotocin (STZ) is a well-known animal model of insulinopenic type 1 DM in rats. STZ-induced DM results in a myriad of alteration in the periphery and central nervous system (CNS). Cerebrolysin (CBL) is a neuropeptide preparation that promotes synaptic and neuronal plasticity in various animal models. In all cases, CBL was administered when the model was established. This research aims to investigate the neuroprotective and neurorepair effect of CBL on the cytoarchitecture of neurons and spine density in pyramidal neurons of the prefrontal (PFC) and the CA1 region of the dorsal hippocampus, as well as spheroidal neurons of the dentate gyrus (DG), in STZ-induced DM. In the first experimental condition, STZ and CBL are administered at the same time to evaluate the potential preventive effect of CBL. In the second experimental condition, CBL was administered two months after establishing the DM model to measure the potential neurorepair effect of CBL. STZ-induced hyperglycemia remained unaltered by the administration of CBL in both experimental conditions. In the first experimental condition, CBL treatment preserved the neuronal morphology in PFC layer 3, PFC layer 5 and the DG of the hippocampus, while also maintaining spine density in the PFC-3, DG and CA1 hippocampus. Furthermore, CBL induced neurorepair in neurons within the PFC-3, PFC-5 and CA1 regions of the hippocampus, along with an increase in spine density in the PFC-3, DG and CA1 hippocampus. These findings suggest that CBL´s effects on neuroplasticity could be observed before or after the damage was evident.
Collapse
Affiliation(s)
- Ivette Espinoza
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Francisco Cabrera
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
3
|
Mohamed Yusof NIS, Mohd Fauzi F. Nature's Toolbox for Alzheimer's Disease: A Review on the Potential of Natural Products as Alzheimer's Disease Drugs. Neurochem Int 2024; 176:105738. [PMID: 38616012 DOI: 10.1016/j.neuint.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Numerous clinical trials involving natural products have been conducted to observe cognitive performances and biomarkers in Alzheimer's Disease (AD) patients. However, to date, no natural-based drugs have been approved by the FDA as treatments for AD. In this review, natural product-based compounds that were tested in clinical trials from 2011 to 2023, registered at www.clinicaltrials.gov were reviewed. Thirteen compounds, encompassing 7 different mechanisms of action were covered. Several observations were deduced, which are: i) several compounds showed cognitive improvement, but these improvements may not extend to AD, ii) compounds that are endogenous to the human body showed better outcomes, and iii) Docosahexaenoic acid (DHA) and cerebrolysin had the most potential as AD drugs among the 13 compounds. Based on the current findings, natural products may be more suitable as a supplement than AD drugs in most cases. However, the studies covered here were conducted in a relatively short amount of time, where compounds acting on AD pathways may take time to show any effect. Given the diverse pathways that these natural products are involved in, they may potentially produce synergistic effects that would be beneficial in treating AD. Additionally, natural products benefit from both physicochemical properties being in more favorable ranges and active transport playing a more significant role than it does for synthetic compounds.
Collapse
Affiliation(s)
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia; Center for Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
4
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Dyomina AV, Smolensky IV, Zaitsev AV. Refinement of the Barnes and Morris water maze protocols improves characterization of spatial cognitive deficits in the lithium-pilocarpine rat model of epilepsy. Epilepsy Behav 2023; 147:109391. [PMID: 37619464 DOI: 10.1016/j.yebeh.2023.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Temporal lobe epilepsy (TLE) often causes cognitive impairment, especially a decline in spatial memory. Reductions in spatial memory and learning are also common in rodent models of TLE. The Morris water maze and the Barnes maze are the standard methods for evaluating spatial learning and memory in rodents. However, animals with TLE may exhibit agitation, distress, and fail to follow the paradigmatic context of these tests, making the interpretation of experimental data difficult. This study optimized the procedure of the Morris water maze and the Barnes maze to evaluate spatial learning and memory in rats with the lithium-pilocarpine TLE model (LPM rats). It was demonstrated that LPM rats required a mandatory and prolonged habituation stage for both tests. Therefore, the experimental rats performed relatively well on these tests. Nevertheless, LPM rats exhibited a slower learning process compared to the control rats. LPM rats also showed a reduction in spatial memory formation. This was more pronounced in the Barnes maze. Also, LPM rats utilized a sequential strategy for searching in the Barnes maze and were incapable of developing a more efficient spatial search strategy that is common in control animals. The Barnes maze may be a better choice for assessing search strategies, learning deficits, and spatial memory in rats with TLE when choosing between the two tests. This is because of the risk of unexpected seizure occurrence during the Morris water maze tests, and the potential risks for animal welfare.
Collapse
Affiliation(s)
- Alexandra V Dyomina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Ilya V Smolensky
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia; Department of Community Health, University of Fribourg, Chemin du Musée 4, 1700 Fribourg, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia.
| |
Collapse
|
6
|
Cumbres-Vargas IM, Zamudio SR, Pichardo-Macías LA, Ramírez-San Juan E. Thalidomide Attenuates Epileptogenesis and Seizures by Decreasing Brain Inflammation in Lithium Pilocarpine Rat Model. Int J Mol Sci 2023; 24:ijms24076488. [PMID: 37047461 PMCID: PMC10094940 DOI: 10.3390/ijms24076488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as a possible treatment against disease development. However, the evidence for these effects is limited. Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and 28 days after SE. TNF-α, IL-6, and IL-1β concentrations were quantified. TOP and TAL (50 mg/kg) increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS frequency, as well as decreasing TNF-α and IL-1β concentrations in the hippocampus. In conclusion, the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic effects, possibly by decreasing neuroinflammation.
Collapse
Affiliation(s)
- Irán M Cumbres-Vargas
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Sergio R Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Luz A Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
7
|
Prakash C, Rabidas SS, Tyagi J, Sharma D. Dehydroepiandrosterone Attenuates Astroglial Activation, Neuronal Loss and Dendritic Degeneration in Iron-Induced Post-Traumatic Epilepsy. Brain Sci 2023; 13:brainsci13040563. [PMID: 37190528 DOI: 10.3390/brainsci13040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-induced experimental epilepsy in rodents reproduces features of post-traumatic epilepsy (PTE) in humans. The neural network of the brain seems to be highly affected during the course of epileptogenesis and determines the occurrence of sudden and recurrent seizures. The aim of the current study was to evaluate astroglial and neuronal response as well as dendritic arborization, and the spine density of pyramidal neurons in the cortex and hippocampus of epileptic rats. We also evaluated the effect of exogenous administration of a neuroactive steroid, dehydroepiandrosterone (DHEA), in epileptic rats. To induce epilepsy, male Wistar rats were given an intracortical injection of 100 mM solution (5 µL) of iron chloride (FeCl3). After 20 days, DHEA was administered intraperitoneally for 21 consecutive days. Results showed epileptic seizures and hippocampal Mossy Fibers (MFs) sprouting in epileptic rats, while DHEA treatment significantly reduced the MFs’ sprouting. Astroglial activation and neuronal loss were subdued in rats that received DHEA compared to epileptic rats. Dendritic arborization and spine density of pyramidal neurons was diminished in epileptic rats, while DHEA treatment partially restored their normal morphology in the cortex and hippocampus regions of the brain. Overall, these findings suggest that DHEA’s antiepileptic effects may contribute to alleviating astroglial activation and neuronal loss along with enhancing dendritic arborization and spine density in PTE.
Collapse
|
8
|
Evaluation of the Antioxidant Activity of Levetiracetam in a Temporal Lobe Epilepsy Model. Biomedicines 2023; 11:biomedicines11030848. [PMID: 36979827 PMCID: PMC10045287 DOI: 10.3390/biomedicines11030848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Epilepsy is a neurological disorder in which it has been shown that the presence of oxidative stress (OS) is implicated in epileptogenesis. The literature has shown that some antiseizure drugs (ASD) have neuroprotective properties. Levetiracetam (LEV) is a drug commonly used as an ASD, and in some studies, it has been found to possess antioxidant properties. Because the antioxidant effects of LEV have not been demonstrated in the chronic phase of epilepsy, the objective of this study was to evaluate, for the first time, the effects of LEV on the oxidant–antioxidant status in the hippocampus of rats with temporal lobe epilepsy (TLE). The in vitro scavenging capacity of LEV was evaluated. LEV administration in rats with TLE significantly increased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, but did not change glutathione peroxidase (GPx) activity, and significantly decreased glutathione reductase (GR) activity in comparison with epileptic rats. LEV administration in rats with TLE significantly reduced hydrogen peroxide (H2O2) levels but did not change lipoperoxidation and carbonylated protein levels in comparison with epileptic rats. In addition, LEV showed in vitro scavenging activity against hydroxyl radical (HO•). LEV showed significant antioxidant effects in relation to restoring the redox balance in the hippocampus of rats with TLE. In vitro, LEV demonstrated direct antioxidant activity against HO•.
Collapse
|
9
|
Anogeissus leiocarpus (DC.) Guill and Perr ameliorates pentylenetetrazole-induced seizure/cognitive impairment in rats via inhibition of oxidative stress. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Cerebrolysin enhances the expression of the synaptogenic protein LRRTM4 in the hippocampus and improves learning and memory in senescent rats. Behav Pharmacol 2021; 31:491-499. [PMID: 31850962 DOI: 10.1097/fbp.0000000000000530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aging reduces the efficiency of the organs and systems, including the cognitive functions. Brain aging is related to a decrease in the vascularity, neurogenesis, and synaptic plasticity. Cerebrolysin, a peptide and amino acid preparation, has been shown to improve the cognitive performance in animal models of Alzheimer's disease. Similarly, the leucine-rich repeat transmembrane 4 protein exhibits a strong synaptogenic activity in the hippocampal synapses. The aim of this study was to evaluate the effect of the cerebrolysin treatment on the learning and memory abilities, sensorimotor functions, and the leucine-rich repeat transmembrane 4 protein expression in the brain of 15-month-old rats. Cerebrolysin (1076 mg/kg) or vehicle was administered to Wistar rats intraperitoneally for 4 weeks. After the treatments, learning and memory were tested using the Barnes maze test, and the acoustic startle response, and its pre-pulse inhibition and habituation were measured. Finally, the leucine-rich repeat transmembrane 4 expression was measured in the brainstem, striatum, and hippocampus using a Western-blot assay. The 15-month-old vehicle-treated rats showed impairments in the habituation of the acoustic startle response and in learning and memory when compared to 3-month-old rats. These impairments were attenuated by the subchronic cerebrolysin treatment. The leucine-rich repeat transmembrane 4 protein expression was lower in the old vehicle-treated rats than in the young rats; the cerebrolysin treatment attenuated that decrease in the old rats. The leucine-rich repeat transmembrane 4 protein was not expressed in striatum or brainstem. These results suggest that the subchronic cerebrolysin treatment enhances the learning and memory abilities in aging by increasing the expression of the leucine-rich repeat transmembrane 4 protein in the hippocampus.
Collapse
|
11
|
Liu Y, Tang Y, Yan J, Du D, Yang Y, Chen F. Deletion of Kv10.2 Causes Abnormal Dendritic Arborization and Epilepsy Susceptibility. Neurochem Res 2020; 45:2949-2958. [PMID: 33033860 DOI: 10.1007/s11064-020-03143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
The abnormal function of the voltage-gated potassium channel Kv10.2 can induce epilepsy. However, the physiological function of Kv10.2 in the central nervous system remains unclear. In this study, we found that Kv10.2 knockout (KO) increased the complexity of neurons in the CA3 subarea of hippocampus. Kv10.2 KO led to enlarged somata, elongated dendritic length, and increased the number of dendritic tips in cultured rat hippocampus neurons. Kv10.2 KO also increased Synapsin I and PSD95 protein density in cultured rat hippocampal neurons. Whole cell patch-clamp recordings of brain slices in the CA3 subarea of hippocampus revealed that Kv10.2 KO increased the amplitude of spontaneous excitatory postsynaptic currents (sEPSC) and miniature excitatory postsynaptic currents (mEPSC), depolarized the resting membrane potential and increased the action potential firing, reduced the rheobase and increased the input resistance, which results in enhanced neuronal excitability. Furthermore, we made electroencephalogram (EEG) recordings of brain activity in freely moving rats before and after inducing seizures by pentylenetetrazole (PTZ) injection. Kv10.2 KO rats dramatically increased the EEG amplitude during epilepsy. Behavioral observation after seizure induction revealed that Kv10.2 KO rats demonstrated shortened onset latency, prolonged duration, and increased seizure severity when compared with wild type rats. Therefore, this study provides a new link between Kv10.2 and neuronal morphology and higher intrinsic excitability.
Collapse
Affiliation(s)
- Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yunfei Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinyu Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
12
|
Levetiracetam Reduced the Basal Excitability of the Dentate Gyrus without Restoring Impaired Synaptic Plasticity in Rats with Temporal Lobe Epilepsy. Brain Sci 2020; 10:brainsci10090634. [PMID: 32933015 PMCID: PMC7565946 DOI: 10.3390/brainsci10090634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy (TLE), the most common type of focal epilepsy, affects learning and memory; these effects are thought to emerge from changes in synaptic plasticity. Levetiracetam (LEV) is a widely used antiepileptic drug that is also associated with the reversal of cognitive dysfunction. The long-lasting effect of LEV treatment and its participation in synaptic plasticity have not been explored in early chronic epilepsy. Therefore, through the measurement of evoked field potentials, this study aimed to comprehensively identify the alterations in the excitability and the short-term (depression/facilitation) and long-term synaptic plasticity (long-term potentiation, LTP) of the dentate gyrus of the hippocampus in a lithium–pilocarpine rat model of TLE, as well as their possible restoration by LEV (1 week; 300 mg/kg/day). TLE increased the population spike (PS) amplitude (input/output curve); interestingly, LEV treatment partially reduced this hyperexcitability. Furthermore, TLE augmented synaptic depression, suppressed paired-pulse facilitation, and reduced PS-LTP; however, LEV did not alleviate such alterations. Conversely, the excitatory postsynaptic potential (EPSP)-LTP of TLE rats was comparable to that of control rats and was decreased by LEV. LEV caused a long-lasting attenuation of basal hyperexcitability but did not restore impaired synaptic plasticity in the early chronic phase of TLE.
Collapse
|
13
|
Alzoubi KH, Al-Jamal FF, Mahasneh AF. Cerebrolysin prevents sleep deprivation induced memory impairment and oxidative stress. Physiol Behav 2020; 217:112823. [DOI: 10.1016/j.physbeh.2020.112823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
|