1
|
Vedala K, Kadis DS, Vannest J, Sino S, Horn PS, Maue E, Williamson B, Mangano FT, Leach JL, Greiner HM. Language Mapping With rTMS in Healthy Pediatric Patients. J Clin Neurophysiol 2025:00004691-990000000-00201. [PMID: 39876045 DOI: 10.1097/wnp.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
PURPOSE Repetitive transcranial magnetic stimulation (rTMS) is a potentially effective, noninvasive tool for language mapping. However, there is a paucity of data in pediatric patients. In this study, we aimed to map language sites in healthy pediatric participants with navigated rTMS. METHODS Children aged 5 to 18 years underwent bilateral language mapping. Stimulation was delivered at 5 Hz during visual-naming and auditory verb-generation tasks in 1 to 2 second bursts. We targeted 33 standardized sites per hemisphere. In total, 34 participants completed the visual-naming task, and 27 participants completed the verb-generation task. Lateralization index (LI) and Wilcoxon signed-rank test were used to assess language lateralization. A difference of least squares means model was developed to determine the prevalence of visual-naming and verb-generation errors within lobar and hemispheric regions. RESULTS Weak left lateralization was observed for visual naming (LI 0.14; p = 0.038), and no lateralization was observed for verb generation (LI 0.08; p = 0.269). Using multiple least squares regression, left hemisphere errors were more likely to occur than right hemisphere errors for visual naming (OR 1.23; 95% CI 1.06-1.44), but no lateralization effect was observed for verb-generation errors (OR 1.11; 95% CI 0.93-1.27). CONCLUSIONS rTMS is likely to identify bilateral or weakly left-lateralized language sites in pediatric patients during language tasks. Although rTMS can be a useful noninvasive method for identifying potential language-positive sites, our results in healthy controls suggest that it cannot be used as a singular method for language mapping in the preoperative setting.
Collapse
Affiliation(s)
- Kishore Vedala
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, ON, Canada
| | - Jennifer Vannest
- University of Cincinnati, Department of Communication Sciences and Disorders, Cincinnati, Ohio, U.S.A
| | - Sara Sino
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Ellen Maue
- Department of Pediatrics, University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Brady Williamson
- Department of Pediatrics, University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A.; and
| | - James L Leach
- Department of Pediatrics, University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| |
Collapse
|
2
|
Greiner HM, Maue E, Horn PS, Vannest J, Vedala K, Leach JL, Tenney JR, Williamson B, Fujiwara H, Coghill RC, Mangano FT, Kadis DS. Tolerability of transcranial magnetic stimulation language mapping in children. Epilepsy Res 2023; 194:107183. [PMID: 37352728 PMCID: PMC10527515 DOI: 10.1016/j.eplepsyres.2023.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE Transcranial Magnetic Stimulation (TMS) has emerged as a viable non-invasive method for mapping language networks. Little is known about the tolerability of transcranial magnetic stimulation language mapping in children. METHODS Children aged 5-18 years underwent bilateral language mapping using repetitive transcranial magnetic stimulation (rTMS) to target 33 sites/hemisphere. Stimulation was delivered at 5 Hz, in 1-2 second bursts, during visual naming and auditory verb generation. Pain unpleasantness and pain intensity were assessed using an unpleasantness visual analog scale (VAS). RESULTS 49 participants tolerated motor mapping and had repetitive transcranial magnetic stimulation. 35/49 (71%) completed visual naming and 26/49 (53%) completed both visual naming and verb generation. Mean electrical field per participant was 115 V/m. Young age and lower language ability were associated with lower completion. Visual analogue scale scores were significantly higher (6.1 vs. 2.8) in participants who withdrew early compared to those who completed at least visual naming. CONCLUSIONS Pain measured by VAS was a major contributor to early withdrawal. However, a complete bilateral map was obtained with one paradigm in 71% of participants. Future studies designed to reduce pain during repetitive transcranial magnetic stimulation over language cortex will boost viability. SIGNIFICANCE This study represents the first attempt to characterize tolerability of bilateral repetitive transcranial magnetic stimulation language mapping in healthy children.
Collapse
Affiliation(s)
- Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center; Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ellen Maue
- Division of Neurology, Cincinnati Children's Hospital Medical Center; Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center; Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jennifer Vannest
- Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kishore Vedala
- Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James L Leach
- Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Tenney
- Division of Neurology, Cincinnati Children's Hospital Medical Center; Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brady Williamson
- Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Physiology, Faculty of Medicine, University of Toronto, Canada
| | - Hisako Fujiwara
- Division of Neurology, Cincinnati Children's Hospital Medical Center; Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert C Coghill
- Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Behavioral Medicine and Clinical Psychology, Cincinnati Childrens Hospital Medical Center, USA; Center for Understanding Pediatric Pain, Cincinnati Childrens Hospital Medical Center, USA
| | - Francesco T Mangano
- Univeristy of Cincinnati, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, USA
| | - Darren S Kadis
- Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
3
|
Navigated Transcranial Magnetic Stimulation Motor Mapping and Diffusion Tensor Imaging Tractography for Diencephalic Tumor in Pediatric Patients. Brain Sci 2023; 13:brainsci13020234. [PMID: 36831777 PMCID: PMC9954590 DOI: 10.3390/brainsci13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Background. In deep-seated brain tumors, adequate preoperative planning is mandatory to assess the best surgical corridor to obtain maximal safe resection. Functional diffusor tensor imaging (DTI) tractography based on navigated transcranial magnetic stimulation (nTMS) motor mapping has proven to be a valid preoperative examination method in adults. The aim of this paper is to present the application of nTMS and functional DTI tractography in a series of pediatric diencephalic tumors. Material and methods. Three patients affected by thalamic (one) and thalamopeduncular tumor (two) were successfully examined with nTMS motor mapping and DTI tractography between October 2020 and October 2021 (F:M 3:0, mean age 12 years ± 0.8). Cortical representation of leg, hand and mouth were determined in the affected hemisphere and the positive stimulation spots were set as seeds point for tractography. Results. Mapping of the motor cortex and tracts reconstruction for leg and hand were successful in all patients, while facial function was properly mapped in one patient only. In all cases, the procedure was well tolerated and no adverse events were recorded. Spatial relationships between tumor and functional tissue guided the surgical planning. Extent of the resection varied from 96.1% to 100% with a postoperative new motor deficit in one patient. Conclusions. nTMS and DTI fiber tracking is a feasible, effective and well-tolerated method to identify motor pathway in deep-seated lesion in pediatric population.
Collapse
|
4
|
Rosenstock T, Picht T, Thomale UW. Letter to the Editor. Navigated TMS in pediatric neurosurgery. J Neurosurg Pediatr 2023; 31:95-96. [PMID: 36242575 DOI: 10.3171/2022.8.peds22323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tizian Rosenstock
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Thomas Picht
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin, Germany
| | - Ulrich-Wilhelm Thomale
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Narayana S, Gibbs SK, Fulton SP, McGregor AL, Mudigoudar B, Weatherspoon SE, Boop FA, Wheless JW. Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Front Neurol 2021; 12:650830. [PMID: 34093397 PMCID: PMC8170483 DOI: 10.3389/fneur.2021.650830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Accurate presurgical mapping of motor, speech, and language cortices, while crucial for neurosurgical planning and minimizing post-operative functional deficits, is challenging in young children with neurological disease. In such children, both invasive (cortical stimulation mapping) and non-invasive functional mapping imaging methods (MEG, fMRI) have limited success, often leading to delayed surgery or adverse post-surgical outcomes. We therefore examined the clinical utility of transcranial magnetic stimulation (TMS) in young children who require functional mapping. In a retrospective chart review of TMS studies performed on children with refractory epilepsy or a brain tumor, at our institution, we identified 47 mapping sessions in 36 children 3 years of age or younger, in whom upper and lower extremity motor mapping was attempted; and 13 children 5–6 years old in whom language mapping, using a naming paradigm, was attempted. The primary hand motor cortex was identified in at least one hemisphere in 33 of 36 patients, and in both hemispheres in 27 children. In 17 children, primary leg motor cortex was also successfully identified. The language cortices in temporal regions were successfully mapped in 11 of 13 patients, and in six of them language cortices in frontal regions were also mapped, with most children (n = 5) showing right hemisphere dominance for expressive language. Ten children had a seizure that was consistent with their clinical semiology during or immediately following TMS, none of which required intervention or impeded completion of mapping. Using TMS, both normal motor, speech, and language developmental patterns and apparent disease induced reorganization were demonstrated in this young cohort. The successful localization of motor, speech, and language cortices in young children improved the understanding of the risk-benefit ratio prior to surgery and facilitated surgical planning aimed at preserving motor, speech, and language functions. Post-operatively, motor function was preserved or improved in nine out of 11 children who underwent surgery, as was language function in all seven children who had surgery for lesions near eloquent cortices. We provide feasibility data that TMS is a safe, reliable, and effective tool to map eloquent cortices in young children.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savannah K Gibbs
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Amy Lee McGregor
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Basanagoud Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Sarah E Weatherspoon
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Frederick A Boop
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| |
Collapse
|
6
|
Rosenstock T, Picht T, Schneider H, Vajkoczy P, Thomale UW. Pediatric navigated transcranial magnetic stimulation motor and language mapping combined with diffusion tensor imaging tractography: clinical experience. J Neurosurg Pediatr 2020; 26:583-593. [PMID: 32707554 DOI: 10.3171/2020.4.peds20174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/27/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In adults, navigated transcranial magnetic stimulation (nTMS) has been established as a preoperative examination method for brain tumors in motor- and language-eloquent locations. However, the clinical relevance of nTMS in children with brain tumors is still unclear. Here, the authors present their initial experience with nTMS-based surgical planning and family counseling in pediatric cases. METHODS The authors analyzed the feasibility of nTMS and its influence on counseling and surgical strategy in a prospective study conducted between July 2017 and September 2019. The main inclusion criterion was a potential benefit from functional mapping data derived from nTMS and/or nTMS-enhanced tractography in pediatric patients who presented to the authors' department prior to surgery for lesions close to motor- and/or speech-eloquent areas. The study was undertaken in 14 patients (median age 7 years, 8 males) who presented with different brain lesions. RESULTS Motor mapping combined with cortical seed area definition could be performed in 10 children (71%) to identify the corticospinal tract by additional diffusion tensor imaging (DTI). All motor mappings could be performed successfully without inducing relevant side effects. In 7 children, nTMS language mapping was performed to detect language-relevant cortical areas and DTI fiber tractography was performed to visualize the individual language network. nTMS examination was not possible in 4 children because of lack of compliance (n = 2), syncope (n = 1), and preexisting implant (n = 1). After successful mapping, the spatial relation between lesion and functional tissue was used for surgical planning in all 10 patients, and 9 children underwent nTMS-DTI integrated neuronavigation. No surgical complications or unexpected neurological deterioration was observed. In all successful nTMS cases, better function-based counseling was offered to the families. In 6 of 10 patients the surgical strategy was adapted according to nTMS data, and in 6 of 10 cases the extent of resection (EOR) was redefined. CONCLUSIONS nTMS and DTI fiber tracking were feasible for the majority of children. Presurgical counseling as well as surgical planning for the approach and EOR were improved by the nTMS examination results. nTMS in combination with DTI fiber tracking can be regarded as beneficial for neurosurgical procedures in eloquent areas in the pediatric population.
Collapse
Affiliation(s)
- Tizian Rosenstock
- 1Department of Neurosurgery, Charité University Medicine
- 2Berlin Institute of Health; and
| | - Thomas Picht
- 1Department of Neurosurgery, Charité University Medicine
| | | | - Peter Vajkoczy
- 1Department of Neurosurgery, Charité University Medicine
| | | |
Collapse
|