1
|
Liu Y, Jia N, Tang C, Long H, Wang J. Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy. Mol Neurobiol 2024; 61:7109-7126. [PMID: 38366306 DOI: 10.1007/s12035-024-04022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
There is growing concern about the role of the microbiota-gut-brain axis in neurological illnesses, and it makes sense to consider microglia as a critical component of this axis in the context of epilepsy. Microglia, which reside in the central nervous system, are dynamic guardians that monitor brain homeostasis. Microglia receive information from the gut microbiota and function as hubs that may be involved in triggering epileptic seizures. Vagus nerve bridges the communication in the axis. Essential axis signaling molecules, such as gamma-aminobutyric acid, 5-hydroxytryptamin, and short-chain fatty acids, are currently under investigation for their participation in drug-resistant epilepsy (DRE). In this review, we explain how vagus nerve connects the gut microbiota to microglia in the brain and discuss the emerging concepts derived from this interaction. Understanding microbiota-gut-brain axis in epilepsy brings hope for DRE therapies. Future treatments can focus on the modulatory effect of the axis and target microglia in solving DRE.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Ningkang Jia
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- The Second Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Chuqi Tang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Su L, Chang M, Li Y, Ding H, Zhao X, Li B, Li J. Analysis of factors influencing the efficacy of vagus nerve stimulation for the treatment of drug-resistant epilepsy in children and prediction model for efficacy evaluation. Front Neurol 2024; 15:1321245. [PMID: 38419715 PMCID: PMC10899677 DOI: 10.3389/fneur.2024.1321245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Vagus nerve stimulation (VNS) has been widely used in the treatment of drug-resistant epilepsy (DRE) in children. We aimed to explore the efficacy and safety of VNS, focusing on factors that can influence the efficacy of VNS, and construct a prediction model for the efficacy of VNS in the treatment of DRE children. Methods Retrospectively analyzed 45 DRE children who underwent VNS at Qilu Hospital of Shandong University from June 2016 to November 2022. A ≥50% reduction in seizure frequency was defined as responder, logistic regression analyses were performed to analyze factors affecting the efficacy of VNS, and a predictive model was constructed. The predictive model was evaluated by receiver operating characteristic curve (ROC), calibration curves, and decision curve analyses (DCA). Results A total of 45 DRE children were included in this study, and the frequency of seizures was significantly reduced after VNS treatment, with 25 responders (55.6%), of whom 6 (13.3%) achieved seizure freedom. There was a significant improvement in the Quality of Life in Childhood Epilepsy Questionnaire (15.5%) and Seizure Severity Score (46.2%). 16 potential factors affecting the efficacy of VNS were included, and three statistically significant positive predictors were ultimately screened: shorter seizure duration, focal seizure, and absence of intellectual disability. We developed a nomogram for predicting the efficacy of VNS in the treatment of DRE children. The ROC curve confirmed that the predictive model has good diagnostic performance (AUC = 0.864, P < 0.05), and the nomogram can be further validated by bootstrapping for 1,000 repetitions, with a C-index of 0.837. Besides, this model showed good fitting and calibration and positive net benefits in decision curve analysis. Conclusion VNS is a safe and effective treatment for DRE children. We developed a predictive nomogram for the efficacy of VNS, which provides a basis for more accurate selection of VNS patients.
Collapse
Affiliation(s)
- Li Su
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengmeng Chang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yumei Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Ding
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Geng G, Hu W, Meng Y, Zhang H, Zhang H, Chen C, Zhang Y, Gao Z, Liu Y, Shi J. Vagus nerve stimulation for treating developmental and epileptic encephalopathy in young children. Front Neurol 2023; 14:1191831. [PMID: 37928141 PMCID: PMC10624125 DOI: 10.3389/fneur.2023.1191831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To investigate the clinical variables that might predict the outcome of developmental and epileptic encephalopathy (DEE) after vagus nerve stimulation (VNS) therapy and identify the risk factors for poor long-term outcome. Patients and methods We retrospectively studied 32 consecutive children with drug-resistant DEE who had undergone VNS surgery from April 2019 to July 2021, which were not suitable for corpus callosotomy. In spite of combining valproic acid, levetiracetam, lamotrigine, topiramate, etc. (standard anti-seizure medicine available in China) it has not been possible to effectively reduce seizures in the population we investigate (Cannabidiol and brivaracetam were not available in China). A responder was defined as a frequency reduction decrease > 50%. Seizure freedom was defined as freedom from seizures for at least 6 months. Sex, electroencephalograph (EEG) group, neurodevelopment, time lag, gene mutation, magnetic resonance imaging (MRI), and epilepsy syndrome were analyzed with Fisher's exact test, The age at onset and age at VNS therapy were analyzed with Kruskal-Wallis test, statistical significance was defined as p < 0.05. And used the effect size to correction. Results Among the 32 patients, the median age at VNS implantation was 4.7 years (range: 1-12 years). At the most recent follow-up, five children (15.6%) were seizure-free and 22 (68.8%) were responders. Univariate analysis demonstrated that the responders were significantly associated with mild development delay/intellectual disability (p = 0.044; phi coefficient = 0.357) and a multifocal EEG pattern (p = 0.022; phi coefficient = -0.405). Kaplan-Meier survival analyses demonstrated that a multifocal EEG pattern (p = 0.049) and DEE without epileptic spasm (ES) (p = 0.012) were statistically significant (p = 0.030). Multivariate analysis demonstrated that DEE with ES had significant predictive value for poor long-term outcome (p = 0.014, hazard ratio = 5.433, confidence interval = 1.402-21.058). Conclusions Our study suggested that VNS was a generally effective adjunct treatment for DEE. Although the predictive factors for VNS efficacy remain unclear, it should be emphasized that patients with ES are not suitable candidates for epilepsy surgery. Further investigations are needed to validate the present results.
Collapse
Affiliation(s)
- Guifu Geng
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Wandong Hu
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yao Meng
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Huan Zhang
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hongwei Zhang
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Chuanmei Chen
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yanqing Zhang
- Pediatric Health Care Institute, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Zaifen Gao
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yong Liu
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Jianguo Shi
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| |
Collapse
|
4
|
Hajtovic S, LoPresti MA, Zhang L, Katlowitz KA, Kizek DJ, Lam S. The role of vagus nerve stimulation in genetic etiologies of drug-resistant epilepsy: a meta-analysis. J Neurosurg Pediatr 2022:1-14. [PMID: 35303699 DOI: 10.3171/2022.1.peds222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Drug-resistant epilepsy (DRE) affects many children. Vagus nerve stimulation (VNS) may improve seizure control; however, its role in children with genetic etiologies of epilepsy is not well described. The authors systematically reviewed the literature to examine the effectiveness of VNS in this cohort. METHODS In January 2021, the authors performed a systematic review of the PubMed/MEDLINE, SCOPUS/Embase, Cochrane, and Web of Science databases to investigate the impact of VNS on seizure outcomes in children with genetic etiologies of epilepsy. Primary outcomes included seizure freedom rate, ≥ 90% seizure reduction rate, and ≥ 50% seizure reduction rate. Secondary outcomes were seizure severity and quality of life (QOL), including cognitive, functional, and behavioral outcomes. A random-effects meta-analysis was performed. RESULTS The authors identified 125 articles, of which 47 with 216 nonduplicate patients were analyzed. Common diagnoses were Dravet syndrome (DS) (92/216 patients [42.6%]) and tuberous sclerosis complex (TSC) (63/216 [29.2%]). Seizure freedom was not reported in any patient with DS; the pooled proportion (95% CI) of patients with ≥ 50% seizure reduction was 41% (21%-58%). Secondary cognitive outcomes of VNS were variable in DS patients, but these patients demonstrated benefits in seizure duration and status epilepticus. In TSC patients, the pooled (95% CI) seizure freedom rate was 40% (12%-71%), ≥ 90% seizure reduction rate was 31% (8%-56%), and ≥ 50% reduction rate was 68% (48%-91%). Regarding the secondary outcomes of VNS in TSC patients, several studies reported decreased seizure severity and improved QOL outcomes. There was limited evidence regarding the use of VNS to treat patients with other genetic etiologies of epilepsy, such as mitochondrial disease, Rett syndrome, Doose syndrome, Landau-Kleffner syndrome, Aicardi syndrome, Angelman syndrome, ring chromosome 20 syndrome, and lissencephaly; variable responses were reported in a limited number of cases. CONCLUSIONS The authors conducted a systematic review of VNS outcomes in children with genetic etiologies of DRE. Among the most studied conditions, patients with TSC had substantial seizure reduction and improvements in QOL, whereas those with DS had less robust seizure reduction. Increased testing, diagnosis, and long-term follow-up studies are necessary to better characterize VNS response in these children.
Collapse
Affiliation(s)
- Sabastian Hajtovic
- 1Sophie Davis Biomedical Education Program, City College of New York, City University of New York School of Medicine, New York, New York
| | - Melissa A LoPresti
- 2Department of Neurosurgery, Division of Pediatric Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas; and
| | - Lu Zhang
- 3Department of Neurosurgery, Division of Pediatric Neurosurgery, Northwestern University, Lurie Children's Hospital, Chicago, Illinois
| | - Kalman A Katlowitz
- 2Department of Neurosurgery, Division of Pediatric Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas; and
| | - Dominic J Kizek
- 2Department of Neurosurgery, Division of Pediatric Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas; and
| | - Sandi Lam
- 3Department of Neurosurgery, Division of Pediatric Neurosurgery, Northwestern University, Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
5
|
Wang Z, Yuan X, Zhang Q, Wen J, Cheng T, Qin X, Ji T, Shu X, Jiang Y, Liao J, Hao H, Li L, Wu Y. Effects of Stable Vagus Nerve Stimulation Efficacy on Autistic Behaviors in Ten Pediatric Patients With Drug Resistant Epilepsy: An Observational Study. Front Pediatr 2022; 10:846301. [PMID: 35311037 PMCID: PMC8924444 DOI: 10.3389/fped.2022.846301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a safe and effective therapy for pediatric patients with drug-resistant epilepsy (DRE). However, in children with DRE, the effects of VNS on autistic behaviors remain controversial. We retrospectively collected data from 10 children with DRE who underwent VNS implantation and regular parameter regulation in three pediatric epilepsy centers, and completed the behavioral assessments, including the autistic behavior checklist and the child behavior checklist, at follow-ups 1 (mean 2.16 years) and 2 (mean 2.98 years). The 10 children maintained stable seizure control between the two follow-ups. Their autistic behaviors, especially in language, social and self-help, were reduced at follow-up 2 compared to follow-up 1 (p = 0.01, p = 0.01, respectively). Moreover, these improvements were not associated with their seizure control, whether it was positive or negative. These results suggested that the VNS had a positive effect on autistic behaviors, which provided a preliminary clinical basis that VNS may benefit to younger children with DRE comorbidity autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Xing Yuan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tungyang Cheng
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Xiaoya Qin
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaomei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
- Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
- Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Zhang Y, Wang X, Tang C, Guan Y, Chen F, Gao Q, Wang J, Zhou J, Zhai F, Boison D, Luan G, Li T. Genetic variations of adenosine kinase as predictable biomarkers of efficacy of vagus nerve stimulation in patients with pharmacoresistant epilepsy. J Neurosurg 2022; 136:726-735. [PMID: 34479194 DOI: 10.3171/2021.3.jns21141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) is an alternative treatment option for individuals with refractory epilepsy, with nearly 40% of patients showing no benefit after VNS and only 6%-8% achieving seizure freedom. It is presently unclear why some patients respond to treatment and others do not. Therefore, identification of biomarkers to predict efficacy of VNS is of utmost importance. The objective of this study was to explore whether genetic variations in genes involved in adenosine kinase (ADK), ecto-5'-nucleotidase (NT5E), and adenosine A1 receptor (A1R) are linked to outcome of VNS in patients with refractory epilepsy. METHODS Thirty single-nucleotide polymorphisms (SNPs), including 9 in genes encoding ADK, 3 in genes encoding NT5E, and 18 in genes encoding A1R, were genotyped in 194 refractory epilepsy patients who underwent VNS. The chi-square test and binary logistic regression were used to determine associations between genetic differences and VNS efficacy. RESULTS A significant association between ADK SNPs rs11001109, rs7899674, and rs946185 and seizure reduction with VNS was found. Regardless of sex, age, seizure frequency and type, antiseizure drug use, etiology, and prior surgical history, all patients (10/10 patients [100%]) with minor allele homozygosity at rs11001109 (genotype AA) or rs946185 (AA) achieved > 50% seizure reduction and 4 patients (4/10 [40%]) achieved seizure freedom. VNS therapy demonstrated higher efficacy among carriers of minor allele rs7899674 (CG + GG) (68.3% vs 48.8% for patients with major allele homozygosity). CONCLUSIONS Homozygous ADK SNPs rs11001109 (AA) and rs946185 (AA), as well as minor allele rs7899674 (CG + GG), may serve as useful biomarkers for prediction of VNS therapy outcome.
Collapse
Affiliation(s)
- Yifan Zhang
- 2Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- 1Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chongyang Tang
- 1Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- 1Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Fan Chen
- 2Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,3Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China; and
| | - Qing Gao
- 2Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- 3Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China; and
| | - Jian Zhou
- 1Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- 1Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Detlev Boison
- 4Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey
| | - Guoming Luan
- 1Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- 2Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,3Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China; and
| |
Collapse
|
7
|
Liu S, Xiong Z, Wang J, Tang C, Deng J, Zhang J, Guo M, Guan Y, Zhou J, Zhai F, Luan G, Li T. Efficacy and potential predictors of vagus nerve stimulation therapy in refractory postencephalitic epilepsy. Ther Adv Chronic Dis 2022; 13:20406223211066738. [PMID: 35070253 PMCID: PMC8771757 DOI: 10.1177/20406223211066738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is a therapeutic approach for patients with refractory postencephalitic epilepsy (PEE), which is characterized by drug resistance and disappointing surgical outcomes. However, the efficacy of VNS has not yet been studied in patients with refractory PEE. The present study aimed to demonstrate the efficacy of VNS and evaluate potential clinical predictors in patients with refractory PEE. METHODS We retrospectively collected the outcomes of VNS with at least a 1-year follow-up in all patients with refractory PEE. Subgroups were classified as responders and non-responders according to the efficacy of VNS (⩾50% or < 50% reduction in seizure frequency). Preoperative data were analyzed to screen for potential predictors of VNS responsiveness. RESULTS A total of 42 refractory PEE patients who underwent VNS therapy were enrolled, with an average age of 21.13 ± 9.70 years. Seizure frequency was reduced by more than 50% in 64.25% of patients, and 7.14% of patients achieved seizure-free events after VNS therapy. In addition, the response rates increased over time, with 40.5%, 50.0% and 57.1%, respectively at 6 months, 12 months, and 24 months after VNS therapy. Preoperative duration of epilepsy, monthly seizure frequency, and spatial distribution of interictal epileptic discharges (IEDs) were correlated with responders (p < 0.05) in the univariate analysis. Further multivariate regression analysis demonstrated that refractory PEE patients with high monthly seizure frequency or Focal IEDs (focal or multifocal epileptiform discharges) achieved better efficacy on VNS (p = 0.010, p = 0.003, respectively). CONCLUSION VNS is an effective palliative therapy for patients with refractory PEE. Focal IEDs (focal or multifocal epileptiform discharges) and high seizure frequency were potential preoperative predictors of effectiveness after VNS therapy.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhonghua Xiong
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chongyang Tang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mengyi Guo
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, XiangshanYikesong 50, Haidian District, Beijing 100093, China
| |
Collapse
|
8
|
Yates CF, Riney K, Malone S, Shah U, Coulthard LG, Campbell R, Wallace G, Wood M. Vagus nerve stimulation: a 20-year Australian experience. Acta Neurochir (Wien) 2022; 164:219-227. [PMID: 34755209 DOI: 10.1007/s00701-021-05046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) therapy was first approved in the mid-1990s in the USA, Europe and Australia, with demonstrable efficacy in paediatric populations. Benefit in seizure frequency reduction can be observed up to 2 years post-intervention; however, few studies assess outcomes beyond this period. Furthermore, paediatric cohort sizes are small, limiting generalisability of outcome assessments. We evaluate VNS insertion outcomes and complications or side-effects in a large paediatric cohort, over a 20-year period from Queensland's first VNS insertion. METHODS A retrospective review was conducted of all paediatric VNS insertions at the Queensland Children's Hospital (QCH) and the Mater Children's Hospital/Mater Children's Private Hospital (MCH/MCPH) Brisbane. A minimum of 1-year follow-up from 1999 to 2020 was required for inclusion. Patients were assessed on demographics, epilepsy details, seizure outcomes and complications or side-effects. RESULTS In this extended follow-up cohort (76 patients, 7.2 ± 5.3 years), 51.3% of patients had ≥ 50% seizure frequency reduction, while 73.7% experienced an Engel III outcome (worthwhile benefit) or better. Eleven patients (14.9%) were seizure-free at follow-up, and 81.6% retained long-term therapy. Stimulation-related side-effects are common (17.1%) but rarely result in stimulation cessation (3.9%). Cessation occurred in 14 patients (18.4%) and most commonly related to minimal benefit (13.2%). Demographics, aetiology, seizure nature and surgical factors did not influence outcomes. CONCLUSION Over extended treatment periods, a large proportion of patients will benefit significantly from VNS therapy. Approximately 4 of 5 patients will retain VNS therapy, and in cases of cessation, this is most commonly related to minimal benefit. Underlying demographics, aetiology or seizure nature do not influence outcomes. This 20-year Queensland assessment of VNS therapy outcomes informs long-term expectation of VNS therapy.
Collapse
|
9
|
Broncel A, Bocian R, Konopacki J. Vagal Nerve Stimulation: The Effect on the Brain Oscillatory Field Potential. Neuroscience 2021; 483:127-138. [PMID: 34952159 DOI: 10.1016/j.neuroscience.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
More than thirty years of medical treatment with the use of vagal nerve stimulation (VNS) has shown that this therapeutic procedure works in a number of homeostatic disturbances. Although the clinical usage of VNS has a long history, our knowledge about the central mechanisms underlying this treatment is still limited. In the present paper we review the effects of VNS on brain oscillations as a possible electrophysiological bio-marker of VNS efficacy. The review was prepared mainly on the basis of data delivered from clinical observations and the outcomes of electrophysiological experiments conducted on laboratory animals that are available in PubMed. We consciously did not focus on epileptiform activity understood as a pathologic oscillatory activity, which was widely discussed in the numerous previously published reviews. The main conclusion of the present paper is that further, well-designed experiments on laboratory animals are absolutely necessary to address the electrophysiological issues. These will fill a number of gaps in our present knowledge of the central mechanisms underlying VNS therapy.
Collapse
Affiliation(s)
- Adam Broncel
- Medical Technology Centre, Natolin 15, 92-701 Lodz, Poland.
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
10
|
Tamura G, Lo WB, Yau I, Vaughan KA, Go C, Singleton WG, Hazon D, Yan H, Otsubo H, Donner EJ, Rutka JT, Ibrahim GM. Patient Characteristics Associated with Seizure Freedom after Vagus Nerve Stimulation in Pediatric Intractable Epilepsy: An Analysis of “Super-Responders”. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0041-1739489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractClinical responses to vagus nerve stimulation (VNS) therapy for intractable epilepsy can be unpredictable, and factors that predict response to therapy are elusive. Minority of children undergoing VNS achieve seizure freedom. The current study aimed to characterize this exceptional patient population, defined as “super-responders” (SRs). Retrospective data were collected from 150 children who underwent VNS at a single pediatric institution. The patients' mean age at VNS device implantation was 12.0 years (range, 3.09–17.9 years). Ten SRs (6.7%) were identified who achieved and maintained seizure freedom for longer than 1 year following implantation. The interval between epilepsy onset and VNS device implantation was significantly shorter in SRs than in the other children (mean epilepsy duration 5.72 vs. 8.44 years, respectively; p = 0.032). SRs also had a significantly shorter proportion of life with epilepsy compared with the other children (mean ratio of epilepsy duration to age at implantation 0.52 vs. 0.71, respectively; p = 0.023). SRs reported their seizure freedom relatively early (six patients within 6 months and all patients within 12 months after implantation) at relatively low device settings (mean output current 0.81 mA at their last follow-up). Compared with conventional models, responsive VNS models with autostimulation features did not increase the ratio of SRs. No other clinical or imaging characteristic difference between SRs and the other children was found in this cohort. The current study showed a significant association between shorter epilepsy duration and shorter proportion of life with epilepsy and seizure freedom after VNS.
Collapse
Affiliation(s)
- Goichiro Tamura
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Division of Pediatric Neurosurgery, Ibaraki Children's Hospital, Mito, Ibaraki, Japan
| | - William B. Lo
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Ivanna Yau
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kerry A. Vaughan
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Cristina Go
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - William G.B. Singleton
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David Hazon
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hiroshi Otsubo
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J. Donner
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T. Rutka
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - George M. Ibrahim
- Division of Neurosurgery, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Mao H, Chen Y, Ge Q, Ye L, Cheng H. Short- and Long-Term Response of Vagus Nerve Stimulation Therapy in Drug-Resistant Epilepsy: A Systematic Review and Meta-Analysis. Neuromodulation 2021; 25:327-342. [PMID: 35396068 DOI: 10.1111/ner.13509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To compare the short- and long-term efficacies as well as tolerability of vagus nerve stimulation (VNS) for the patients with drug-resistant epilepsy (DRE) in comparison with status at baseline. MATERIALS AND METHODS We conducted a specific and systematic search in online data bases for relevant literature published prior to December 2020. The literature retrieved, including randomized clinical trials (RCTs) and observational studies, were then reviewed, and analyzed. A fixed-effect model was used to evaluate the pooled odds ratio (OR) of responder rates and complications associated with RCTs. A random-effect model was used to generate overall responder rates and overall incidences of complication. RESULTS A total of 61 studies, featuring 5223 patients, were included in our study. The pooled ORs of responder rates, hoarseness/voice change, throat pain, coughing, dyspnea, paresthesia, muscle pain, and headache during the short-term phase were 2.195 (p = 0.001), 5.527 (p = 0.0001), 0.935 (p = 0.883), 1.119 (p = 0.655), 2.901 (p = 0.005), 1.775 (p = 0.061), 3.606 (p = 0.123), and 0.928 (p = 0.806), respectively. The overall responder rates in 3, 6, 12, 24, 36, 48, and 60 months postoperatively were 0.421, 0.455, 0.401, 0.451, 0.482, 0.502, and 0.508, respectively. The overall incidences of complication were 0.274 for hoarseness/voice change, 0.099 for throat pain, 0.133 for coughing, 0.099 for dyspnea, 0.102 for paresthesia, 0.062 for muscle pain, 0.101 for headache, 0.015 for dysphagia, 0.013 for neck pain, 0.040 for infection, 0.030 for lead fracture, 0.019 for vocal cord palsy, and 0.020 for device malfunction, respectively. CONCLUSIONS The estimating of efficacy and tolerability, using data from the existing literature, indicated VNS therapy is a safe and effective treatment option for patients with DRE.
Collapse
Affiliation(s)
- Hongliang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yonghao Chen
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Qintao Ge
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|