1
|
Zhang Y, Li J, Wu L, Sun M, Liu S, Tian B, Luo L, Chen B. Exploring Cortical and Hippocampal Changes in Temporal Lobe Epilepsy Using Automated MRI Segmentation Techniques. Int J Gen Med 2024; 17:5959-5971. [PMID: 39678688 PMCID: PMC11645949 DOI: 10.2147/ijgm.s484443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/16/2024] [Indexed: 12/17/2024] Open
Abstract
Background To investigate the applicability of MR-based automated segmentation techniques in evaluating cortical and hippocampal changes in adults with temporal lobe epilepsy (TLE), specifically emphasizing the affected hemisphere. Methods A retrospective analysis involved 48 cases diagnosed with TLE based on clinical and EEG criteria. The cohort comprised 30 patients with hippocampal sclerosis (HS) and 18 with nonlesional temporal lobe epilepsy (TLE-NL) on MR. 30 healthy volunteers constituted the control group. FreeSurfer software facilitated the segmentation of cortical regions and hippocampal subfields, generating numerical values for cortical thickness and hippocampal subfield volumes on the left hemisphere. Independent sample Wilcoxon rank-sum tests enabled pairwise comparisons of cortical thickness and hippocampal subfield volumes between the control, TLE-NL, and HS groups. Results Significant differences emerged in hippocampal total volume and volumes of the head, body, and tail regions between the control and HS groups and the TLE-NL and HS groups. Cortical thickness of 6 regions exhibited statistical differences between the control and TLE-NL groups, while 15 regions showed distinctions between the control and HS groups. 2 regions displayed variations in cortical thickness between the TLE-NL and HS groups. Conclusion MRI-based automated segmentation techniques provide valuable insights into cortical and hippocampal structural variations in distinct TLE subtypes. This methodology effectively delineates changes in cortical regions and hippocampal subfields, augmenting clinical comprehension of TLE progression.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Jian Li
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Linhua Wu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Mingxing Sun
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Shan Liu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Bo Tian
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Lei Luo
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Bing Chen
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| |
Collapse
|
2
|
Wan X, Zeng Y, Wang J, Tian M, Yin X, Zhang J. Structural and functional abnormalities and cognitive profiles in older adults with early-onset and late-onset focal epilepsy. Cereb Cortex 2024; 34:bhae300. [PMID: 39052362 DOI: 10.1093/cercor/bhae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to determine the patterns of changes in structure, function, and cognitive ability in early-onset and late-onset older adults with focal epilepsy (OFE). This study first utilized the deformation-based morphometry analysis to identify structural abnormalities, which were used as the seed region to investigate the functional connectivity with the whole brain. Next, a correlation analysis was performed between the altered imaging findings and neuropsychiatry assessments. Finally, the potential role of structural-functional abnormalities in the diagnosis of epilepsy was further explored by using mediation analysis. Compared with healthy controls (n = 28), the area of reduced structural volume was concentrated in the bilateral cerebellum, right thalamus, and right middle cingulate cortex, with frontal, temporal, and occipital lobes also affected in early-onset focal epilepsy (n = 26), while late-onset patients (n = 31) displayed cerebellar, thalamic, and cingulate atrophy. Furthermore, correlation analyses suggest an association between structural abnormalities and cognitive assessments. Dysfunctional connectivity in the cerebellum, cingulate cortex, and frontal gyrus partially mediates the relationship between structural abnormalities and the diagnosis of early-onset focal epilepsy. This study identified structural and functional abnormalities in early-onset and late-onset focal epilepsy and explored characters in cognitive performance. Structural-functional coupling may play a potential role in the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yanwei Zeng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200040, China
| |
Collapse
|
3
|
Wen W, Zhou J, Zhan C, Wang J. Microglia as a Game Changer in Epilepsy Comorbid Depression. Mol Neurobiol 2024; 61:4021-4037. [PMID: 38048030 DOI: 10.1007/s12035-023-03810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
As one of the most common neurological diseases, epilepsy is often accompanied by psychiatric disorders. Depression is the most universal comorbidity of epilepsy, especially in temporal lobe epilepsy (TLE). Therefore, it is urgently needed to figure out potential mechanisms and the optimization of therapeutic strategies. Microglia play a pivotal role in the coexistent relationship between epilepsy and depression. Activated microglia released cytokines like IL-6 and IL-1β, orchestrating neuroinflammation especially in the hippocampus, worsening both depression and epilepsy. The decrease of intracellular K+ is a common part in various molecular changes. The P2X7-NLRP3-IL-1β is a major inflammatory pathway that disrupts brain network. Extra ATP and CX3CL1 also lead to neuronal excitotoxicity and blood-brain barrier (BBB) disruption. Regulating neuroinflammation aiming at microglia-related molecules is capable of suspending the vicious mutual aggravating circle of epilepsy and depression. Other overlaps between epilepsy and depression lie in transcriptomic, neuroimaging, diagnosis and treatment. Hippocampal sclerosis (HS) and amygdala enlargement (AE) may be the underlying macroscopic pathological changes according to current studies. Extant evidence shows that cognitive behavioral therapy (CBT) and antidepressants like selective serotonin-reuptake inhibitors (SSRIs) are safe, but the effect is limited. Improvement in depression is likely to reduce the frequency of seizure. More comprehensive experiments are warranted to better understand the relationship between them.
Collapse
Affiliation(s)
- Wenrong Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingsheng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang'an Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Hsieh H, Xu Q, Zhang Q, Yang F, Xu Y, Liu G, Liu R, Yu Q, Zhang Z, Lu G, Gu X, Zhang Z. Mapping progressive damage epicenters in epilepsy with generalized tonic-clonic seizures by causal structural covariance network density (CaSCNd). Brain Res 2024; 1828:148766. [PMID: 38242522 DOI: 10.1016/j.brainres.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
AIMS Mapping progressive patterns of structural damage in epilepsies with idiopathic and secondarily generalized tonic-clonic seizures with causal structural covariance networks and multiple analysis strategies. METHODS Patients with idiopathic generalized tonic-clonic seizures (IGTCS) (n = 114) and secondarily generalized tonic-clonic seizures (SGTCS) (n = 125) were recruited. Morphometric parameter of gray matter volume was analyzed on structural MRI. Structural covariance network based on granger causality analysis (CaSCN) was performed on the cross-sectional morphometric data sorted by disease durations of patients. Seed-based CaSCN analysis was firstly carried out to map the progressive and influential patterns of damage to thalamus-related structures. A novel technique for voxel-based CaSCN density (CaSCNd) analysis was further proposed, enabling for identifying the epicenter of structural brain damage during the disease process. RESULTS The thalamus-associated CaSCNs demonstrated different patterns of progressive damage in two types of generalized tonic-clonic seizures. In IGTCS, the structural damage was predominantly driven from the thalamus, and expanded to the cortex, while in SGTCS, the damage was predominantly driven from the cortex, and expanded to the thalamus through the basal ganglia. CaSCNd analysis revealed that the IGTCS had an out-effect epicenter in the thalamus, whereas the SGTCS had equipotent in- and out-effects in the thalamus, cortex, and basal ganglia. CONCLUSION CaSCN revealed distinct damage patterns in the two types of GTCS, featuring with measurement of structural brain damage from the accumulating effect over a relatively long time period. Our work provided evidence for understanding network impairment mechanism underlying different GTCSs.
Collapse
Affiliation(s)
- Hsinyu Hsieh
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qiang Xu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qirui Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fang Yang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yin Xu
- Institute of Neurology Anhui, University of Chinese Medicine, Hefei 230061, China
| | - Gaoping Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ruoting Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qianqian Yu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zixuan Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xing Gu
- Department of Ultrasound, YanCheng 1(st) People Hospital, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Mugikura S, Mori N, Gang M, Kanno S, Jin K, Osawa SI, Nakasato N, Takase K. Interhemispheric asymmetrical change in gray matter volume in patients with unilateral hippocampal sclerosis. J Clin Imaging Sci 2023; 13:38. [PMID: 38205275 PMCID: PMC10778066 DOI: 10.25259/jcis_77_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
Objectives To clarify the interhemispheric asymmetrical change in gray matter volume (GMV) in unilateral hippocampal sclerosis (HS), we compared changes in GMV relative to normal subjects between the HS and contralateral or non-HS sides. Material and Methods Forty-five patients with unilateral HS and 30 healthy subjects were enrolled. We quantified changes in GMV in the patients with HS as compared to GMV in the normal subjects by introducing the Z-score (Z-GMV) in each region or region of interest in unilateral HS. Then, we assessed the asymmetrically decreased regions, that is, regions with significantly higher Z-GMV on the HS side than the contralateral or non-HS side. Z-GMV was calculated according to the two templates of 58 regions per hemisphere covering the whole brain by anatomical automatic labeling (AAL) and 78 regions per cerebral hemisphere using the Anatomy Toolbox. Results Seven and four regions in AAL and 17 and 11 regions in Anatomy Toolbox were asymmetrically decreased in the Left Hand Side (LHS) and Right Hand Side (RHS), respectively. Hippocampus and Caudate in AAL, five subregions of the hippocampus (CA1-3, Dentate Gyrus and hippocampus-amygdala-transition-area and 4 extrahippocampal regions including two subregions in amygdala (CM: Centromedial, SF: Superficial), basal forebrain (BF) (Ch4), and thalamus (temporal) in anatomy toolbox were common among LHS and RHS concerning asymmetrically decreased regions. Conclusion By introducing Z-GMV, we demonstrated the regions with asymmetrically decreased GMV in LHS and RHS, and found that the hippocampus and extrahippocampal regions, including the BF, were the common asymmetrically decreased regions among LHS and RHS.
Collapse
Affiliation(s)
- Shunji Mugikura
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, Akita, Japan
| | - Miyeong Gang
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University, Sendai, Japan
| | - Shigenori Kanno
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University, Sendai, Japan
| | - Kazutaka Jin
- Department of Epileptology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shin-Ichiro Osawa
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Peng Y, Wang K, Liu C, Tan L, Zhang M, He J, Dai Y, Wang G, Liu X, Xiao B, Xie F, Long L. Cerebellar functional disruption and compensation in mesial temporal lobe epilepsy. Front Neurol 2023; 14:1062149. [PMID: 36816567 PMCID: PMC9932542 DOI: 10.3389/fneur.2023.1062149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Background Cerebellar functional alterations are common in patients with mesial temporal lobe epilepsy (MTLE), which contribute to cognitive decline. This study aimed to deepen our knowledge of cerebellar functional alterations in patients with MTLE. Methods In this study, participants were recruited from an ongoing prospective cohort of 13 patients with left TLE (LTLE), 17 patients with right TLE (RTLE), and 30 healthy controls (HCs). Functional magnetic resonance imaging data were collected during a Chinese verbal fluency task. Group independent component (IC) analysis (group ICA) was applied to segment the cerebellum into six functionally separated networks. Functional connectivity was compared among cerebellar networks, cerebellar activation maps, and the centrality parameters of cerebellar regions. For cerebellar functional profiles with significant differences, we calculated their correlation with clinical features and neuropsychological scores. Result Compared to HCs and patients with LTLE, patients with RTLE had higher cerebellar functional connectivity between the default mode network (DMN) and the oculomotor network and lower cerebellar functional connectivity from the frontoparietal network (FPN) to the dorsal attention network (DAN) (p < 0.05, false discovery rate- (FDR-) corrected). Cerebellar degree centrality (DC) of the right lobule III was significantly higher in patients with LTLE compared to HC and patients with RTLE (p < 0.05, FDR-corrected). Higher cerebellar functional connectivity between the DMN and the oculomotor network, as well as lower cerebellar degree centrality of the right lobule III, was correlated with worse information test performance. Conclusion Cerebellar functional profiles were altered in MTLE and correlated with long-term memory in patients.
Collapse
Affiliation(s)
- Yiqian Peng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Langzi Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Min Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jialinzi He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwei Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianghe Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China,Fangfang Xie ✉
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Clinical Research Center for Epileptic Disease of Hunan Province, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lili Long ✉
| |
Collapse
|
7
|
Nie L, Jiang Y, Lv Z, Pang X, Liang X, Chang W, Li J, Zheng J. Deep Cerebellar Nuclei Functional Connectivity with Cerebral Cortex in Temporal Lobe Epilepsy With and Without Focal to Bilateral Tonic-Clonic Seizures: a Resting-State fMRI Study. THE CEREBELLUM 2021; 21:253-263. [PMID: 34164777 DOI: 10.1007/s12311-021-01266-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
We aimed to explore the altered functional connectivity patterns within cerebello-cerebral circuits in temporal lobe epilepsy (TLE) patients with and without focal to bilateral tonic-clonic seizures (FBTCS). Forty-two patients with unilateral TLE (21 with and 21 without FBTCS) and 22 healthy controls were recruited. We chose deep cerebellar nuclei as seed regions, calculated static and dynamic functional connectivity (sFC and dFC) in the patients with and without FBTCS and healthy controls, and compared sFC and dFC among the three groups. Correlation analyses were used to assess relationships between the significantly altered imaging features and patient clinical parameters. Compared to the group without FBTCS, the FBTCS group showed decreased sFC between the right dentate nuclei and left hemisphere regions including the middle frontal gyrus, superior temporal gyrus, superior medial frontal gyrus and posterior cingulate gyrus, and significantly increased dFC between the right interposed nuclei and contralateral precuneus. Relative to HCs, the FBTCS group demonstrated prominently decreased sFC between the right dentate nuclei and left middle frontal gyrus. No significant correlations between the altered imaging features and patient clinical parameters were observed. Our results suggest that the disrupted cerebello-cerebral FC might be related to cognitive impairment, epileptogenesis, and propagation of epileptic activities in patients with FBTCS.
Collapse
Affiliation(s)
- Liluo Nie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanchun Jiang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zongxia Lv
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaomin Pang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiulin Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Chang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|