1
|
Niu R, Guo X, Wang J, Yang X. The hidden rhythms of epilepsy: exploring biological clocks and epileptic seizure dynamics. ACTA EPILEPTOLOGICA 2025; 7:1. [PMID: 40217344 PMCID: PMC11960285 DOI: 10.1186/s42494-024-00197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 04/15/2025] Open
Abstract
Epilepsy, characterized by recurrent seizures, is influenced by biological rhythms, such as circadian, seasonal, and menstrual cycles. These rhythms affect the frequency, severity, and timing of seizures, although the precise mechanisms underlying these associations remain unclear. This review examines the role of biological clocks, particularly the core circadian genes Bmal1, Clock, Per, and Cry, in regulating neuronal excitability and epilepsy susceptibility. We explore how the sleep-wake cycle, particularly non-rapid eye movement sleep, increases the risk of seizures, and discuss the circadian modulation of neurotransmitters like gamma-aminobutyric acid and glutamate. We explore clinical implications, including chronotherapy which refers to the practice of timing medical treatments to align with the body's natural biological rhythms, such as the circadian rhythm. Chronotherapy aligns anti-seizure medication administration with biological rhythms. We also discuss rhythm-based neuromodulation strategies, such as adaptive deep brain stimulation, which may dynamically change stimulation in response to predicted seizures in patients, provide additional therapeutic options. This review emphasizes the potential of integrating biological rhythm analysis into personalized epilepsy management, offering novel approaches to optimize treatment and improve patient outcomes. Future research should focus on understanding individual variability in seizure rhythms and harnessing technological innovations to enhance seizure prediction, precision treatment, and long-term management.
Collapse
Affiliation(s)
- Ruili Niu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuan Guo
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiaoyang Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaofeng Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
2
|
King A, Gerard EE. Contraception, fecundity, and pregnancy in women with epilepsy: an update on recent literature. Curr Opin Neurol 2022; 35:161-168. [PMID: 35191408 PMCID: PMC9230745 DOI: 10.1097/wco.0000000000001039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Caring for women with epilepsy requires specialized knowledge about potential teratogenicity of antiseizure medications, interactions with hormonal contraception, and pregnancy outcomes. RECENT FINDINGS There has been an improvement in understanding the cognitive outcomes of infants exposed in utero in recent years. Folic acid supplementation helps mitigate the cognitive teratogenicity of antiseizure medications. Recent updates provide reassurance that seizure frequency tends to remain stable throughout pregnancy. There is conflicting evidence about the fecundity impact of epilepsy and antiseizure medications in women with epilepsy. SUMMARY Recent research highlights the importance of early counseling about the risks and interactions of contraception, pregnancy, and antiseizure medications. More research is needed to understand fertility in women with epilepsy.
Collapse
Affiliation(s)
- Alexa King
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
3
|
Pollo MLM, Gimenes C, Covolan L. Male rats are more vulnerable to pentylenetetrazole-kindling model but females have more spatial memory-related deficits. Epilepsy Behav 2022; 129:108632. [PMID: 35248979 DOI: 10.1016/j.yebeh.2022.108632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022]
Abstract
Epilepsy is the most common neurological condition worldwide and is largely associated with memory impairment, both in human as well as animal models. Furthermore, differences in seizure onset and severity have already been observed between the sexes. The induction of epilepsy through multiple systemic injections of pentylenetetrazole (PTZ), a protocol known as chemical kindling, is a well-established tool for studies regarding epileptogenesis, as well as the efficacy of antiseizure medication. The aim of this study was to compare possible sex-related differences in seizure severity, memory, neuronal damage as well as the effects of the estrous cycle on seizure severity. Male (n = 10) and Female (n = 11) animals received 30 mg/kg i.p. injections three days a week for 6 weeks and, after the last application, were tested for short and long-term memory. Control, Male (n = 8) and Female (n = 5) groups did not receive PTZ injections. Although PTZ did not promote important changes into the estrous cycle phases throughout the entire experiment, female animals presented lower seizure scores but had both short and long-term memory impairments associated with cell loss in the hippocampus and anterior cingulate area. Male rats presented higher seizure scores associated with pronounced cell loss, but only long-term memory deficits. Our results demonstrate that the PTZ kindling protocol results in higher seizure scores with increased vulnerability in male rats, but female rats displayed more intense memory deficits.
Collapse
Affiliation(s)
- Maria Luiza Motta Pollo
- Disciplina de Neurofisiologia, Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Christiane Gimenes
- Disciplina de Neurofisiologia, Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Luciene Covolan
- Disciplina de Neurofisiologia, Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|