1
|
Shao W, Liu L, Gu J, Yang Y, Wu Y, Zhang Z, Xu Q, Wang Y, Shen Y, Gu L, Cheng Y, Zhang H. Spotlight on mechanism of sudden unexpected death in epilepsy in Dravet syndrome. Transl Psychiatry 2025; 15:84. [PMID: 40097380 PMCID: PMC11914262 DOI: 10.1038/s41398-025-03304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Dravet syndrome (DS) is a severe and catastrophic epilepsy with childhood onset. The incidence and prevalence of sudden unexpected death in epilepsy (SUDEP) are significantly higher in DS patients than in general epileptic populations. Although extensive research conducted, the underlying mechanisms of SUDEP occurring in DS patients remain unclear. This review focuses on the link between DS and SUDEP and analyzes the potential pathogenesis. We summarize the genetic basis of DS and SUDEP and elucidate the pathophysiological mechanisms of SUDEP in DS. Furthermore, given the drug-resistant nature of this disorder, the pharmacological approach has limited efficacy and often causes side effects, therefore, the non-pharmacological approaches and precise treatment can reduce the risk of SUDEP in this condition, open a new window to cure this disease, and provide a widened landscape of treatment options for patients.
Collapse
Affiliation(s)
- WeiHui Shao
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuan Cheng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
3
|
Gu J, Shao W, Liu L, Wang Y, Yang Y, Zhang Z, Wu Y, Xu Q, Gu L, Zhang Y, Shen Y, Zhao H, Zeng C, Zhang H. Challenges and future directions of SUDEP models. Lab Anim (NY) 2024; 53:226-243. [PMID: 39187733 DOI: 10.1038/s41684-024-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy, causing a global public health burden. The underlying mechanisms of SUDEP remain elusive, and effective prevention or treatment strategies require further investigation. A major challenge in current SUDEP research is the lack of an ideal model that maximally mimics the human condition. Animal models are important for revealing the potential pathogenesis of SUDEP and preventing its occurrence; however, they have potential limitations due to species differences that prevent them from precisely replicating the intricate physiological and pathological processes of human disease. This Review provides a comprehensive overview of several available SUDEP animal models, highlighting their pros and cons. More importantly, we further propose the establishment of an ideal model based on brain-computer interfaces and artificial intelligence, hoping to offer new insights into potential advancements in SUDEP research. In doing so, we hope to provide valuable information for SUDEP researchers, offer new insights into the pathogenesis of SUDEP and open new avenues for the development of strategies to prevent SUDEP.
Collapse
Affiliation(s)
- JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - LeYuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - HaiTing Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with epilepsy. This review highlights the recent literature regarding epidemiology on a global scale, putative mechanisms and thoughts towards intervention and prevention. RECENT FINDINGS Recently, numerous population-based studies have examined the incidence of SUDEP in many countries. Remarkably, incidence is quite consistent across these studies, and is commensurate with the recent estimates of about 1.2 per 1000 patient years. These studies further continue to support that incidence is similar across the ages and that comparable factors portend heightened risk for SUDEP. Fervent research in patients and animal studies continues to hone the understanding of potential mechanisms for SUDEP, especially those regarding seizure-induced respiratory dysregulation. Many of these studies and others have begun to lay out a path towards identification of improved treatment and prevention means. However, continued efforts are needed to educate medical professionals about SUDEP risk and the need to disclose this to patients. SUMMARY SUDEP is a devastating potential outcome of epilepsy. More is continually learned about risk and mechanisms from clinical and preclinical studies. This knowledge can hopefully be leveraged into preventive measures in the near future.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology
- Neuroscience Graduate Program
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ana T Novella Maciel
- Department of Neurology
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Universidad Nacional Autónoma de México, Mexico City, México
| | - Matthew J Summerfield
- Neuroscience Graduate Program
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Zhu L, Chen D, Lin X, Liu L. Gene expression profile for different susceptibilities to sound stimulation: a comparative study on brainstems between two inbred laboratory mouse strains. BMC Genomics 2022; 23:783. [PMID: 36451107 PMCID: PMC9710100 DOI: 10.1186/s12864-022-09016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND DBA/1 mice have a higher susceptibility to generalized audiogenic seizures (AGSz) and seizure-induced respiratory arrest (S-IRA) than C57/BL6 mice. The gene expression profile might be potentially related to this difference. This study aimed to investigate the susceptibility difference in AGSz and S-IRA between DBA/1 and C57BL/6 mice by profiling long noncoding RNAs (lncRNAs) and mRNA expression. METHODS We compared lncRNAs and mRNAs from the brainstem of the two strains with Arraystar Mouse lncRNA Microarray V3.0 (Arraystar, Rockville, MD). Gene Ontology (GO) and pathway analyses were performed to determine the potentially related biological functions and pathways based on differentially expressed mRNAs. qRT-PCR was carried out to validate the results. RESULTS A total of 897 lncRNAs and 438 mRNAs were differentially expressed (fold change ≥2, P < 0.05), of which 192 lncRNAs were upregulated and 705 lncRNAs were downregulated. A total of 138 mRNAs were upregulated, and 300 mRNAs were downregulated. In terms of specific mRNAs, Htr5b, Gabra2, Hspa1b and Gfra1 may be related to AGSz or S-IRA. Additionally, lncRNA Neat1 may participate in the difference in susceptibility. GO and pathway analyses suggested that TGF-β signaling, metabolic process and MHC protein complex could be involved in these differences. Coexpression analysis identified 9 differentially expressed antisense lncRNAs and 115 long intergenic noncoding RNAs (lincRNAs), and 2010012P19Rik and its adjacent RNA Tnfsf12-Tnfsf13 may have participated in S-IRA by regulating sympathetic neuron function. The results of the qRT-PCR of five selected lncRNAs (AK038711, Gm11762, 1500004A13Rik, AA388235 and Neat1) and four selected mRNAs (Hspa1b, Htr5b, Gabra2 and Gfra1) were consistent with those obtained by microarray. CONCLUSION We concluded that TGF-β signaling and metabolic process may contribute to the differential sensitivity to AGSz and S-IRA. Among mRNAs, Htr5b, Gabra2, Hspa1b and Gfra1 could potentially influence the susceptibility. LncRNA Neat1 and 2010012P19Rik may also contribute to the different response to sound stimulation. Further studies should be carried out to explore the underlying functions and mechanisms of differentially expressed RNAs.
Collapse
Affiliation(s)
- Lina Zhu
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| | - Deng Chen
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| | - Xin Lin
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| | - Ling Liu
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane 37 #, Chengdu, 610041 Sichuan China
| |
Collapse
|